Cargando…

Fundamentals of university mathematics /

The third edition of this popular and effective textbook provides in one volume a unified treatment of topics essential for first year university students studying for degrees in mathematics. Students of computer science, physics and statistics will also find this book a helpful guide to all the bas...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: McGregor, C. M. (Colin M.)
Otros Autores: Nimmo, John, Stothers, W. W. (Wilson W.)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford, Philadelphia, PA : Woodhead Pub., 2010.
Edición:3rd ed.
Colección:Woodhead Publishing in mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 SCIDIR_ocn827454885
003 OCoLC
005 20231117044829.0
006 m o d
007 cr |n|||||||||
008 130211s2010 enka o 001 0 eng d
040 |a YDXCP  |b eng  |e pn  |c YDXCP  |d OCLCO  |d E7B  |d OCLCQ  |d N$T  |d OPELS  |d UMI  |d DEBBG  |d DEBSZ  |d UIU  |d EBLCP  |d OCLCQ  |d COO  |d OCLCQ  |d MERUC  |d OCLCQ  |d OCLCF  |d D6H  |d CEF  |d OCLCQ  |d WYU  |d UAB  |d AU@  |d VT2  |d OCLCQ  |d EZ9  |d S2H  |d OCLCO  |d TAC  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB1D5376  |2 bnb 
019 |a 867317784  |a 880372960  |a 1103269262  |a 1126319848  |a 1126786846  |a 1163943058  |a 1182007563  |a 1182010024  |a 1195826692  |a 1202566991  |a 1240533219  |a 1302701518  |a 1355685402 
020 |a 0857092243  |q (electronic bk.) 
020 |a 9780857092243  |q (electronic bk.) 
020 |a 0857092235 
020 |a 9780857092236 
020 |z 9781904275459 
020 |z 1904275451 
020 |z 9780857092236 
020 |z 0857092235 
024 3 |a 9780857092236 
024 8 |a C20130161909 
035 |a (OCoLC)827454885  |z (OCoLC)867317784  |z (OCoLC)880372960  |z (OCoLC)1103269262  |z (OCoLC)1126319848  |z (OCoLC)1126786846  |z (OCoLC)1163943058  |z (OCoLC)1182007563  |z (OCoLC)1182010024  |z (OCoLC)1195826692  |z (OCoLC)1202566991  |z (OCoLC)1240533219  |z (OCoLC)1302701518  |z (OCoLC)1355685402 
050 4 |a QA37.3  |b .M3474 2010 
072 7 |a MAT  |x 039000  |2 bisacsh 
072 7 |a MAT  |x 023000  |2 bisacsh 
072 7 |a MAT  |x 026000  |2 bisacsh 
082 0 4 |a 510  |2 21 
100 1 |a McGregor, C. M.  |q (Colin M.) 
245 1 0 |a Fundamentals of university mathematics /  |c Colin McGregor, Jonathan Nimmo and Wilson Stothers. 
250 |a 3rd ed. 
260 |a Oxford, Philadelphia, PA :  |b Woodhead Pub.,  |c 2010. 
300 |a 1 online resource (xii, 552 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Woodhead Publishing in mathematics 
588 0 |a Print version record. 
520 |a The third edition of this popular and effective textbook provides in one volume a unified treatment of topics essential for first year university students studying for degrees in mathematics. Students of computer science, physics and statistics will also find this book a helpful guide to all the basic mathematics they require. It clearly and comprehensively covers much of the material that other textbooks tend to assume, assisting students in the transition to university-level mathematics. Expertly revised and updated, the chapters cover topics such as number systems, set and functions, differential calculus, matrices and integral calculus. Worked examples are provided and chapters conclude with exercises to which answers are given. For students seeking further challenges, problems intersperse the text, for which complete solutions are provided. Modifications in this third edition include a more informal approach to sequence limits and an increase in the number of worked examples, exercises and problems. The third edition of Fundamentals of university mathematics is an essential reference for first year university students in mathematics and related disciplines. It will also be of interest to professionals seeking a useful guide to mathematics at this level and capable pre-university students. One volume, unified treatment of essential topicsClearly and comprehensively covers material beyond standard textbooksWorked examples, challenges and exercises throughout. 
505 0 |a Cover; Fundamentals of University Mathematics; Copyright; Table of contents; Preface to the Third Edition; Notation; Chapter 1 Preliminaries; 1.1 Number Systems; 1 .2 Intervals; 1 .3 The Plane; 1.4 Modulus; 1 .5 Rational Powers; 1.6 Inequalities; 1.7 Divisibility and Primes; 1.8 Rationals and Irrationals; 1.X Exercises; Chapter 2 Functions and Inverse Functions; 2 .1 Functions and Composition; 2.2 Real Functions; 2.3 Standard Functions; 2.4 Boundedness; 2.5 Inverse Functions; 2.6 Monotonic Functions; 2.X Exercises; Chapter 3 Polynomials and Rational Functions; 3.1 Polynomials. 
505 8 |a 3.2 Division and Factors3.3 Quadratics; 3.4 Rational Functions; 3.X Exercises; Chapter 4 Induction and the Binomial Theorem; 4.1 The Principle of Induction; 4.2 Picking and Choosing; 4.3 The Binomial Theorem; 4.X Exercises; Chapter 5 Trigonometry; 5.1 Trigonometric Functions; 5.2 Identities; 5.3 General Solutions of Equations; 5.4 The t-formulae; 5.5 Inverse Trigonometric Functions; 5.X Exercises; Chapter 6 Complex Numbers; 6.1 The Complex Plane; 6.2 Polar Form and Complex Exponentials; 6.3 De Moivre's Theorem and Trigonometry; 6.4 Complex Polynomials; 6.5 Roots of Unity. 
505 8 |a 6.6 Rigid Transformations of the Plane6.X Exercises; Chapter 7 Limits and Continuity; 7.1 Function Limits; 7.2 Properties of Limits; 7.3 Continuity; 7.4 Approaching Infinity; 7.X Exercises; Chapter 8 Differentiation-Fundamentals; 8.1 First Principles; 8.2 Properties of Derivatives; 8.3 Some Standard Derivatives; 8.4 Higher Derivatives; 8.X Exercises; Chapter 9 Differentiation-Applications; 9.1 Critical Points; 9.2 Local and Global Extrema; 9.3 The Mean Value Theorem; 9.4 More on Monotonic Functions; 9.5 Rates of Change; 9.6 L'H�Opital's Rule; 9.X Exercises; Chapter 10 Curve Sketching. 
505 8 |a 10.1 Types of Curve10.2 Graphs; 10.3 Implicit Curves; 10.4 Parametric Curves; 10.5 Conic Sections; 10.6 Polar Curves; 10.X Exercises; Chapter 11 Matrices and Linear Equations; 11.1 Basic Definitions; 11.2 Operations on Matrices; 11.3 Matrix Multiplication; 11.4 Further Properties of Multiplication; 11.5 Linear Equations; 11.6 Matrix Inverses; 11.7 Finding Matrix Inverses; 11.X Exercises; Chapter 12 Vectors and Three Dimensional Geometry; 12.1 Basic Properties of Vectors; 12.2 Coordinates in Three Dimensions; 12.3 The Component Form of a Vector; 12.4 The Section Formula. 
505 8 |a 12.5 Lines in Three Dimensional Space12.X Exercises; Chapter 13 Products of Vectors; 13.1 Angles and the Scalar Product; 13.2 Planes and the Vector Product; 13.3 Spheres; 13.4 The Scalar Triple Product; 13.6 Projections; 13.X Exercises; Chapter 14 Integration- Fundamentals; 14.1 Indefinite Integrals; 14.2 Definite Integrals; 14.3 The Fundamental Theorem of Calculus; 14.4 Improper Integrals; 14.X Exercises; Chapter 15 Logarithms and Exponentials; 15.1 The Logarithmic Function; 15.2 The Exponential Function; 15.3 Real Powers; 15.4 Hyperbolic Functions; 15.5 Inverse Hyperbolic Functions. 
542 |f Copyright #169: Elsevier Science Technology  |g 2010 
630 0 0 |a Advanced mathematics. 
650 0 |a Mathematics. 
650 6 |a Math�ematiques.  |0 (CaQQLa)201-0068291 
650 7 |a applied mathematics.  |2 aat  |0 (CStmoGRI)aat300054524 
650 7 |a mathematics.  |2 aat  |0 (CStmoGRI)aat300054522 
650 7 |a MATHEMATICS  |x Essays.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Pre-Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Reference.  |2 bisacsh 
650 7 |a Mathematics  |2 fast  |0 (OCoLC)fst01012163 
700 1 |a Nimmo, John. 
700 1 |a Stothers, W. W.  |q (Wilson W.) 
776 0 8 |i Print version:  |a McGregor, C.M. (Colin M.).  |t Fundamentals of university mathematics.  |b 3rd ed.  |d Oxford, Philadelphia, PA : Woodhead Pub., 2010  |z 9781904275459  |z 1904275451 
830 0 |a Woodhead Publishing in mathematics. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780857092236  |z Texto completo