|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
SCIDIR_ocn815470912 |
003 |
OCoLC |
005 |
20231117044748.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
770113s1977 nyua ob 001 0 eng d |
010 |
|
|
|z 76027438
|
040 |
|
|
|a E7B
|b eng
|e pn
|c E7B
|d OCLCO
|d N$T
|d UIU
|d OPELS
|d OCLCQ
|d OCLCF
|d UIU
|d IDEBK
|d YDXCP
|d EBLCP
|d OCLCQ
|d YDX
|d OCLCO
|d STF
|d OCLCQ
|d MERUC
|d OCLCQ
|d NLE
|d AU@
|d UKMGB
|d OCLCQ
|d OL$
|d OCLCQ
|d HS0
|d LUN
|d OCLCQ
|d OCLCE
|d OCLCO
|d OCLCQ
|d OCLCO
|d INARC
|d OCLCQ
|d OCLCO
|
066 |
|
|
|c (S
|
016 |
7 |
|
|a 017596585
|2 Uk
|
019 |
|
|
|a 812524991
|a 817814803
|a 818817668
|a 823134419
|a 985302923
|a 985388124
|a 990012102
|a 990325323
|a 1129180547
|a 1151167888
|a 1250227209
|a 1301963930
|
020 |
|
|
|a 9780080570426
|q (electronic bk.)
|
020 |
|
|
|a 0080570429
|q (electronic bk.)
|
020 |
|
|
|z 0122384407
|
020 |
|
|
|z 9780122384400
|
035 |
|
|
|a (OCoLC)815470912
|z (OCoLC)812524991
|z (OCoLC)817814803
|z (OCoLC)818817668
|z (OCoLC)823134419
|z (OCoLC)985302923
|z (OCoLC)985388124
|z (OCoLC)990012102
|z (OCoLC)990325323
|z (OCoLC)1129180547
|z (OCoLC)1151167888
|z (OCoLC)1250227209
|z (OCoLC)1301963930
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA248
|b .E5 1977eb
|
072 |
|
7 |
|a MAT
|x 016000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 018000
|2 bisacsh
|
082 |
0 |
4 |
|a 511/.3
|
083 |
0 |
0 |
|a Set theory
|
084 |
|
|
|a 31.10
|2 bcl
|
084 |
|
|
|a SK 150
|2 rvk
|
084 |
|
|
|a SK 155
|2 rvk
|
084 |
|
|
|a 03Exx
|2 msc
|
084 |
|
|
|a 03E10
|2 msc
|
100 |
1 |
|
|a Enderton, Herbert B.
|
245 |
1 |
0 |
|a Elements of set theory /
|c Herbert B. Enderton.
|
260 |
|
|
|a New York :
|b Academic Press,
|c �1977.
|
300 |
|
|
|a 1 online resource (xiv, 279 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references (pages 269-270) and index.
|
520 |
|
|
|a This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning.
|
505 |
0 |
|
|6 880-01
|a Types; ; ; Transfinite Recursion Again; ; ; Alephs; ; ; Ordinal Operations; ; ; Isomorphism Types; ; ; Arithmetic of Order Types; ; ; Ordinal Arithmetic; ; ; Chapter 9 Special Topics; ; ; Well-Founded Relations; ; ; Natural Models; ; ; Cofinality; ; ; Appendix Notation, Logic, and Proofs; ; ; Selected References for Further Study; ; ; List of Axioms; ; ; Index;
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified]:
|c HathiTrust Digital Library.
|d 2021.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2021.
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
650 |
|
0 |
|a Set theory.
|
650 |
|
4 |
|a Mathematics.
|
650 |
|
4 |
|a Physical Sciences & Mathematics.
|
650 |
|
4 |
|a Algebra.
|
650 |
|
6 |
|a Th�eorie des ensembles.
|0 (CaQQLa)201-0001167
|
650 |
|
7 |
|a MATHEMATICS
|x Infinity.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Logic.
|2 bisacsh
|
650 |
|
7 |
|a Set theory
|2 fast
|0 (OCoLC)fst01113587
|
650 |
|
7 |
|a Mengenlehre
|2 gnd
|0 (DE-588)4074715-3
|
650 |
1 |
7 |
|a Verzamelingen (wiskunde)
|2 gtt
|
650 |
|
7 |
|a Set theory.
|2 nli
|
650 |
|
7 |
|a Ensembles, Th�eorie des.
|2 ram
|
653 |
|
0 |
|a Set theory
|
776 |
0 |
8 |
|i Print version:
|a Enderton, Herbert B.
|t Elements of Set Theory.
|d San Diego : Elsevier Science, �1977
|z 9780122384400
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780122384400
|z Texto completo
|
880 |
0 |
|
|6 505-00/(S
|a Contents; ; ; Preface; ; ; List of Symbols; ; ; Chapter 1 Introduction; ; ; Baby Set Theory; ; ; Sets--An Informal View; ; ; Classes; ; ; Axiomatic Method; ; ; Notation; ; ; Historical Notes; ; ; Chapter 2 Axioms and Operations; ; ; Axioms; ; ; Arbitrary Unions and Intersections; ; ; Algebra of Sets; ; ; Epilogue; ; ; Review Exercises; ; ; Chapter 3 Relations and Functions; ; ; Ordered Pairs; ; ; Relations; ; ; n-Ary Relations; ; ; Functions; ; ; Infinite Cartesian Products; ; ; Equivalence Relations; ; ; Ordering Relations; ; ; Review Exercises; ; ; Chapter 4 Natural Numbers; ; ; Inductive Sets; ; ; Peano's Postulates; ; ; Recursion on ω
|
880 |
0 |
|
|6 505-01/(S
|a Arithmetic; ; ; Ordering on ω; ; ; Review Exercises; ; ; Chapter 5 Construction of the Real Numbers; ; ; Integers; ; ; Rational Numbers; ; ; Real Numbers; ; ; Summaries; ; ; Two; ; ; Chapter 6 Cardinal Numbers and the Axiom of Choice; ; ; Equinumerosity; ; ; Finite Sets; ; ; Cardinal Arithmetic; ; ; Ordering Cardinal Numbers; ; ; Axiom of Choice; ; ; Countable Sets; ; ; Arithmetic of Infinite Cardinals; ; ; Continuum Hypothesis; ; ; Chapter 7 Orderings and Ordinals; ; ; Partial Orderings; ; ; Well Orderings; ; ; Replacement Axioms; ; ; Epsilon-Images; ; ; Isomorphisms; ; ; Ordinal Numbers; ; ; Debts Paid; ; ; Rank; ; ; Chapter 8 Ordinals and Order.
|