Nonlinear fiber optics /
Since the 4th edition appeared, a fast evolution of the field has occurred. The fifth edition of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure, as well as being used in the medical fi...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford :
Academic,
2013.
|
Edición: | 5th ed. |
Colección: | Engineering professional collection
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: ch. 1 Introduction
- 1.1. Historical Perspective
- 1.2. Fiber Characteristics
- 1.2.1. Material and Fabrication
- 1.2.2. Fiber Losses
- 1.2.3. Chromatic Dispersion
- 1.2.4. Polarization-Mode Dispersion
- 1.3. Fiber Nonlinearities
- 1.3.1. Nonlinear Refraction
- 1.3.2. Stimulated Inelastic Scattering
- 1.3.3. Importance of Nonlinear Effects
- 1.4. Overview
- Problems
- References
- ch. 2 Pulse Propagation in Fibers
- 2.1. Maxwell's Equations
- 2.2. Fiber Modes
- 2.2.1. Eigenvalue Equation
- 2.2.2. Single-Mode Condition
- 2.2.3. Characteristics of the Fundamental Mode
- 2.3. Pulse-Propagation Equation
- 2.3.1. Nonlinear Pulse Propagation
- 2.3.2. Higher-Order Nonlinear Effects
- 2.3.3. Raman Response Function and its Impact
- 2.3.4. Extension to Multimode Fibers
- 2.4. Numerical Methods
- 2.4.1. Split-Step Fourier Method
- 2.4.2. Finite-Difference Methods
- Problems
- References
- ch. 3 Group-Velocity Dispersion.
- Note continued: 3.1. Different Propagation Regimes
- 3.2. Dispersion-Induced Pulse Broadening
- 3.2.1. Gaussian Pulses
- 3.2.2. Chirped Gaussian Pulses
- 3.2.3. Hyperbolic-Secant Pulses
- 3.2.4. Super-Gaussian Pulses
- 3.2.5. Experimental Results
- 3.3. Third-Order Dispersion
- 3.3.1. Evolution of Chirped Gaussian Pulses
- 3.3.2. Broadening Factor
- 3.3.3. Arbitrary-Shape Pulses
- 3.3.4. Ultrashort-Pulse Measurements
- 3.4. Dispersion Management
- 3.4.1. GVD-Induced Limitations
- 3.4.2. Dispersion Compensation
- 3.4.3.Compensation of Third-Order Dispersion
- Problems
- References
- ch. 4 Self-Phase Modulation
- 4.1. SPM-Induced Spectral Changes
- 4.1.1. Nonlinear Phase Shift
- 4.1.2. Changes in Pulse Spectra
- 4.1.3. Effect of Pulse Shape and Initial Chirp
- 4.1.4. Effect of Partial Coherence
- 4.2. Effect of Group-Velocity Dispersion
- 4.2.1. Pulse Evolution
- 4.2.2. Broadening Factor
- 4.2.3. Optical Wave Breaking
- 4.2.4. Experimental Results.
- Note continued: 4.2.5. Effect of Third-Order Dispersion
- 4.2.6. SPM Effects in Fiber Amplifiers
- 4.3. Semianalytic Techniques
- 4.3.1. Moment Method
- 4.3.2. Variational Method
- 4.3.3. Specific Analytic Solutions
- 4.4. Higher-Order Nonlinear Effects
- 4.4.1. Self-Steepening
- 4.4.2. Effect of GVD on Optical Shocks
- 4.4.3. Intrapulse Raman Scattering
- Problems
- References
- ch. 5 Optical Solitons
- 5.1. Modulation Instability
- 5.1.1. Linear Stability Analysis
- 5.1.2. Gain Spectrum
- 5.1.3. Experimental Results
- 5.1.4. Ultrashort Pulse Generation
- 5.1.5. Impact on Lightwave Systems
- 5.2. Fiber Solitons
- 5.2.1. Inverse Scattering Method
- 5.2.2. Fundamental Soliton
- 5.2.3. Second and Higher-Order Solitons
- 5.2.4. Experimental Confirmation
- 5.2.5. Soliton Stability
- 5.3. Other Types of Solitons
- 5.3.1. Dark Solitons
- 5.3.2. Bistable Solitons
- 5.3.3. Dispersion-Managed Solitons
- 5.3.4. Optical Similaritons
- 5.4. Perturbation of Solitons.
- Note continued: 5.4.1. Perturbation Methods
- 5.4.2. Fiber Losses
- 5.4.3. Soliton Amplification
- 5.4.4. Soliton Interaction
- 5.5. Higher-Order Effects
- 5.5.1. Moment Equations for Pulse Parameters
- 5.5.2. Third-Order Dispersion
- 5.5.3. Self-Steepening
- 5.5.4. Intrapulse Raman Scattering
- 5.5.5. Propagation of Femtosecond Pulses
- Problems
- References
- ch. 6 Polarization Effects
- 6.1. Nonlinear Birefringence
- 6.1.1. Origin of Nonlinear Birefringence
- 6.1.2. Coupled-Mode Equations
- 6.1.3. Elliptically Birefringent Fibers
- 6.2. Nonlinear Phase Shift
- 6.2.1. Nondispersive XPM
- 6.2.2. Optical Kerr Effect
- 6.2.3. Pulse Shaping
- 6.3. Evolution of Polarization State
- 6.3.1. Analytic Solution
- 6.3.2. Poincare-Sphere Representation
- 6.3.3. Polarization Instability
- 6.3.4. Polarization Chaos
- 6.4. Vector Modulation Instability
- 6.4.1. Low-Birefringence Fibers
- 6.4.2. High-Birefringence Fibers
- 6.4.3. Isotropic Fibers
- 6.4.4. Experimental Results.
- Note continued: 6.5. Birefringence and Solitons
- 6.5.1. Low-Birefringence Fibers
- 6.5.2. High-Birefringence Fibers
- 6.5.3. Soliton-Dragging Logic Gates
- 6.5.4. Vector Solitons
- 6.6. Random Birefringence
- 6.6.1. Polarization-Mode Dispersion
- 6.6.2. Vector Form of the NLS Equation
- 6.6.3. Effects of PMD on Solitons
- Problems
- References
- ch. 7 Cross-Phase Modulation
- 7.1. XPM-Induced Nonlinear Coupling
- 7.1.1. Nonlinear Refractive Index
- 7.1.2. Coupled NLS Equations
- 7.2. XPM-Induced Modulation Instability
- 7.2.1. Linear Stability Analysis
- 7.2.2. Experimental Results
- 7.3. XPM-Paired Solitons
- 7.3.1. Bright-Dark Soliton Pair
- 7.3.2. Bright-Gray Soliton Pair
- 7.3.3. Periodic Solutions
- 7.3.4. Multiple Coupled NLS Equations
- 7.4. Spectral and Temporal Effects
- 7.4.1. Asymmetric Spectral Broadening
- 7.4.2. Asymmetric Temporal Changes
- 7.4.3. Higher-Order Nonlinear Effects
- 7.5. Applications of XPM
- 7.5.1. XPM-Induced Pulse Compression.
- Note continued: 7.5.2. XPM-Induced Optical Switching
- 7.5.3. XPM-Induced Nonreciprocity
- 7.6. Polarization Effects
- 7.6.1. Vector Theory of XPM
- 7.6.2. Polarization Evolution
- 7.6.3. Polarization-Dependent Spectral Broadening
- 7.6.4. Pulse Trapping and Compression
- 7.6.5. XPM-Induced Wave Breaking
- 7.7. XPM Effects in Birefringent Fibers
- 7.7.1. Fibers with Low Birefringence
- 7.7.2. Fibers with High Birefringence
- Problems
- References
- ch. 8 Stimulated Raman Scattering
- 8.1. Basic Concepts
- 8.1.1. Raman-Gain Spectrum
- 8.1.2. Raman Threshold
- 8.1.3. Coupled Amplitude Equations
- 8.1.4. Effect of Four-Wave Mixing
- 8.2. Quasi-Continuous SRS
- 8.2.1. Single-Pass Raman Generation
- 8.2.2. Raman Fiber Lasers
- 8.2.3. Raman Fiber Amplifiers
- 8.2.4. Raman-Induced Crosstalk
- 8.3. SRS with Short Pump Pulses
- 8.3.1. Pulse-Propagation Equations
- 8.3.2. Nondispersive Case
- 8.3.3. Effects of GVD
- 8.3.4. Raman-Induced Index Changes.
- Note continued: 8.3.5. Experimental Results
- 8.3.6. Synchronously Pumped Raman Lasers
- 8.3.7. Short-Pulse Raman Amplification
- 8.4. Soliton Effects
- 8.4.1. Raman Solitons
- 8.4.2. Raman Soliton Lasers
- 8.4.3. Soliton-Effect Pulse Compression
- 8.5. Polarization Effects
- 8.5.1. Vector Theory of Raman Amplification
- 8.5.2. PMD Effects on Raman Amplification
- Problems
- References
- ch. 9 Stimulated Brillouin Scattering
- 9.1. Basic Concepts
- 9.1.1. Physical Process
- 9.1.2. Brillouin-Gain Spectrum
- 9.2. Quasi-CW SBS
- 9.2.1. Brillouin Threshold
- 9.2.2. Polarization Effects
- 9.2.3. Techniques for Controlling the SBS Threshold
- 9.2.4. Experimental Results
- 9.3. Brillouin-Fiber Amplifiers
- 9.3.1. Gain Saturation
- 9.3.2. Amplifier Design and Applications
- 9.4. SBS Dynamics
- 9.4.1. Coupled Amplitude Equations
- 9.4.2. SBS with Q-Switched Pulses
- 9.4.3. SBS-Induced Index Changes
- 9.4.4. Relaxation Oscillations
- 9.4.5. Modulation Instability and Chaos.
- Note continued: 9.5. Brillouin-Fiber Lasers
- 9.5.1. CW Operation
- 9.5.2. Pulsed Operation
- Problems
- References
- ch. 10 Four-Wave Mixing
- 10.1. Origin of Four-Wave Mixing
- 10.2. Theory of Four-Wave Mixing
- 10.2.1. Coupled Amplitude Equations
- 10.2.2. Approximate Solution
- 10.2.3. Effect of Phase Matching
- 10.2.4. Ultrafast Four-Wave Mixing
- 10.3. Phase-Matching Techniques
- 10.3.1. Physical Mechanisms
- 10.3.2. Phase Matching in Multimode Fibers
- 10.3.3. Phase Matching in Single-Mode Fibers
- 10.3.4. Phase Matching in Birefringent Fibers
- 10.4. Parametric Amplification
- 10.4.1. Review of Early Work
- 10.4.2. Gain Spectrum and Its Bandwidth
- 10.4.3. Single-Pump Configuration
- 10.4.4. Dual-Pump Configuration
- 10.4.5. Effects of Pump Depletion
- 10.5. Polarization Effects
- 10.5.1. Vector Theory of Four-Wave Mixing
- 10.5.2. Polarization Dependence of Parametric Gain
- 10.5.3. Linearly and Circularly Polarized Pumps.
- Note continued: 10.5.4. Effect of Residual Fiber Birefringence
- 10.6. Applications of Four-Wave Mixing
- 10.6.1. Parametric Oscillators
- 10.6.2. Ultrafast Signal Processing
- 10.6.3. Quantum Correlation and Noise Squeezing
- 10.6.4. Phase-Sensitive Amplification
- Problems
- References
- ch. 11 Highly Nonlinear Fibers
- 11.1. Nonlinear Parameter
- 11.1.1. Units and Values of n2
- 11.1.2. SPM-Based Techniques
- 11.1.3. XPM-Based Technique
- 11.1.4. FWM-Based Technique
- 11.1.5. Variations in n2 Values
- 11.2. Fibers with Silica Cladding
- 11.3. Tapered Fibers with Air Cladding
- 11.4. Microstructured Fibers
- 11.4.1. Design and Fabrication
- 11.4.2. Modal and Dispersive Properties
- 11.4.3. Hollow-Core Photonic Crystal Fibers
- 11.4.4. Bragg Fibers
- 11.5. Non-Silica Fibers
- 11.5.1. Lead-Silicate Fibers
- 11.5.2. Chalcogenide Fibers
- 11.5.3. Bismuth-Oxide Fibers
- 11.6. Pulse Propagation in Narrow-Core Fibers
- 11.6.1. Vectorial Theory.
- Note continued: 11.6.2. Frequency-Dependent Mode Profiles
- Problems
- References
- ch. 12 Novel Nonlinear Phenomena
- 12.1. Soliton Fission and Dispersive Waves
- 12.1.1. Fission of Second- and Higher-Order Solitons
- 12.1.2. Generation of Dispersive Waves
- 12.2. Intrapulse Raman Scattering
- 12.2.1. Enhanced RIFS Through Soliton Fission
- 12.2.2. Cross-correlation Technique
- 12.2.3. Wavelength Tuning through RIFS
- 12.2.4. Effects of Birefringence
- 12.2.5. Suppression of Raman-Induced Frequency Shifts
- 12.2.6. Soliton Dynamics Near a Zero-Dispersion Wavelength
- 12.2.7. Multipeak Raman Solitons
- 12.3. Four-Wave Mixing
- 12.3.1. Role of Fourth-Order Dispersion
- 12.3.2. Role of Fiber Birefringence
- 12.3.3. Parametric Amplifiers and Wavelength Converters
- 12.3.4. Tunable Fiber-Optic Parametric Oscillators
- 12.4. Second-Harmonic Generation
- 12.4.1. Physical Mechanisms
- 12.4.2. Thermal Poling and Quasi-Phase Matching
- 12.4.3. SHG Theory.
- Note continued: 12.5. Third-Harmonic Generation
- 12.5.1. THG in Highly Nonlinear Fibers
- 12.5.2. Effects of Group-Velocity Mismatch
- 12.5.3. Effects of Fiber Birefringence
- Problems
- References
- ch. 13 Supercontinuum Generation
- 13.1. Pumping with Picosecond Pulses
- 13.1.1. Nonlinear Mechanisms
- 13.1.2. Experimental Progress After 2000
- 13.2. Pumping with Femtosecond Pulses
- 13.2.1. Microstructured Silica Fibers
- 13.2.2. Microstructured Nonsilica Fibers
- 13.3. Temporal and Spectral Evolutions
- 13.3.1. Numerical Modeling of Supercontinuum
- 13.3.2. Role of Cross-Phase Modulation
- 13.3.3. XPM-Induced Trapping
- 13.3.4. Role of Four-Wave Mixing
- 13.4. CW or Quasi-CW Pumping
- 13.4.1. Nonlinear Mechanisms
- 13.4.2. Experimental Progress
- 13.5. Polarization Effects
- 13.5.1. Birefringent Microstructured Fibers
- 13.5.2. Nearly Isotropic Fibers
- 13.5.3. Nonlinear Polarization Rotation in Isotropic Fibers
- 13.6. Coherence Properties.
- Note continued: 13.6.1. Spectral-Domain Degree of Coherence
- 13.6.2. Techniques for Improving Coherence
- 13.6.3. Spectral Incoherent Solitons
- 13.7. Optical Rogue Waves
- 13.7.1.L-Shaped Statistics of Pulse-to-Pulse Fluctuations
- 13.7.2. Techniques for Controlling Rogue-Wave Statistics
- 13.7.3. Modulation Instability Revisited
- Problems
- References.