Cargando…

Fundamentals of renewable energy processes /

With energy sustainability and security at the forefront of public discourse worldwide, there is a pressing need to foster an understanding of clean, safe alternative energy sources such as solar and wind power. Aldo da Rosa's highly respected and comprehensive resource fulfills this need; it h...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Da Rosa, Aldo Vieira
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Academic, 2012.
Edición:3rd ed.
Colección:Engineering professional collection
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Fundamentals of Renewable Energy Processes
  • Copyright Page
  • Table of Content
  • Foreword to the Third Edition
  • Foreword to the Second Edition
  • Foreword to the First Edition
  • Acknowledgements
  • Generalites
  • 1.1 Units and Constants
  • 1.2 Energy and Utility
  • 1.3 Conservation of Energy
  • 1.4 Planetary Energy Balance
  • 1.5 The Energy Utilization Rate
  • 1.6 The Population Explosion
  • 1.7 The Market Penetration Function
  • 1.8 Planetary Energy Resources
  • 1.8.1 Mineral Assets
  • 1.9 Energy Utilization
  • 1.10 The Efficiency Question
  • 1.11 The Ecology Question
  • 1.11.1 Biological
  • 1.11.2 Mineral
  • 1.11.3 Subterranean
  • 1.11.4 Oceanic
  • 1.12 Financing
  • 1.13 The Cost of Electricity
  • References
  • Part I
  • Heat Engines
  • A Minimum of Thermodynamics and of the Kinetic Theory of Gases
  • 2.1 The Motion of Molecules
  • 2.1.1 Temperature
  • 2.1.2 The Perfect-Gas Law
  • 2.1.3 Internal Energy
  • 2.1.4 Specific Heat at Constant Volume
  • 2.1.5 The First Law of Thermodynamics
  • 2.1.6 The Pressure-Volume Work
  • 2.1.7 Specific Heat at Constant Pressure
  • 2.1.8 Degrees of Freedom
  • 2.2 Manipulating Confined Gases (Closed Systems)
  • 2.2.1 Adiabatic Processes
  • 2.2.1.1 Abrupt Compression
  • 2.2.1.2 Gradual Compression
  • 2.2.1.3 p-V Diagrams
  • 2.2.1.4 Polytropic Law
  • 2.2.1.5 Work Done Under Adiabatic Expansion (Close System)
  • 2.2.2 Isothermal Processes
  • 2.2.2.1 Functions of State
  • 2.3 Manipulating Flowing Gases (Open Systems)
  • 2.3.1 Enthalpy
  • 2.3.2 Turbines
  • 2.3.2.1 Isentropic Processes
  • 2.4 Entropy and Lossy Systems
  • 2.4.1 Changes in Entropy
  • 2.4.2 Reversibility
  • 2.4.3 Causes of Irreversibility
  • 2.4.3.1 Friction
  • 2.4.3.2 Heat Transfer Across Temperature Differences (Heat Transfer by Conduction)
  • 2.4.3.3 Unrestrained Compression, Expansion of a Gas
  • 2.4.4 Negentropy.
  • 2.5 Distribution Functions
  • 2.5.1 How to Plot Statistics
  • 2.5.2 Maxwellian Distribution
  • 2.5.3 Fermi-Dirac Distribution
  • 2.6 Boltzmann's Law
  • 2.7 Phases of a Pure Substance
  • 2.8 Symbology
  • References
  • Mechanical Heat Engines
  • 3.1 Heats of Combustion
  • 3.2 Carnot Efficiency
  • 3.3 Engine Types
  • 3.4 The Otto Engine
  • 3.4.1 The Efficiency of an Otto Engine
  • 3.4.2 Using the T-s Diagram
  • 3.4.3 Improving the Efficiency of the Otto Engine
  • 3.5 Gasoline
  • 3.5.1 Heat of Combustion
  • 3.5.2 Antiknock Characteristics
  • 3.6 Knocking
  • 3.7 Rankine Cycle
  • 3.7.1 The Boiling of Water
  • 3.7.2 The Steam Engine
  • 3.7.3 And now?
  • 3.8 The Brayton Cycle
  • 3.9 Combined Cycles
  • 3.10 Hybrid Engines for Automobiles
  • 3.11 The Stirling Engine
  • 3.11.1 The Kinematic Stirling Engine
  • 3.11.1.1 The Alpha Stirling Engine
  • 3.11.1.2 The Beta Stirling Engine
  • 3.11.1.3 The Implementation of the Kinematic Stirling
  • 3.11.2 The Free-piston Stirling Engine
  • References
  • Ocean Thermal Energy Converters
  • 4.1 Introduction
  • 4.2 OTEC Configurations
  • 4.3 OTEC Efficiency
  • 4.4 OTEC Design
  • 4.5 Heat Exchangers
  • 4.6 Siting
  • References
  • Thermoelectricity
  • 5.1 Experimental Observations
  • 5.2 Thermoelectric Thermometers
  • 5.3 The Thermoelectric Generator
  • 5.4 Figure of Merit of a Material
  • 5.5 The Wiedemann-Franz-Lorenz Law
  • 5.6 Thermal Conductivity in Solids
  • 5.7 Seebeck Coefficient of Semiconductors
  • 5.8 Performance of Thermoelectric Materials
  • 5.9 Some Applications of Thermoelectric Generators
  • 5.10 Design of a Thermoelectric Generator
  • 5.11 Thermoelectric Refrigerators and Heat Pumps
  • 5.11.1 Design Using an Existing Thermocouple
  • 5.11.2 Design Based on Given Semiconductors
  • 5.12 Temperature Dependence
  • 5.13 Battery Architecture
  • 5.14 The Physics of Thermoelectricity
  • 5.14.1 The Seebeck Effect.
  • 5.14.2 The Peltier Effect
  • 5.14.3 The Thomson Effect
  • 5.14.4 Kelvin's Relations
  • 5.15 Directions and Signs
  • 5.16 Appendix
  • References
  • Thermionics
  • 6.1 Introduction
  • 6.2 Thermionic Emission
  • 6.3 Electron Transport
  • 6.3.1 The Child-Langmuir Law
  • 6.4 Lossless Diodes with Space Charge Neutralization
  • 6.4.1 Interelectrode Potentials
  • 6.4.2 V-J Characteristics
  • 6.4.3 The Open-Circuit Voltage
  • 6.4.4 Maximum Power Output
  • 6.5 Losses in Vacuum Diodes with No Space Charge
  • 6.5.1 Efficiency
  • 6.5.2 Radiation Losses
  • 6.5.2.1 Radiation of Heat
  • 6.5.2.2 Efficiency with Radiation Losses Only
  • 6.5.3 Excess Electron Energy
  • 6.5.4 Heat Conduction
  • 6.5.5 Lead Resistance
  • 6.6 Real Vacuum-Diodes
  • 6.7 Vapor Diodes
  • 6.7.1 Cesium Adsorption
  • 6.7.2 Contact Ionization
  • 6.7.3 Thermionic Ion Emission
  • 6.7.4 Space Charge Neutralization Conditions
  • 6.7.5 More V-J Characteristics
  • 6.8 High-Pressure Diodes
  • References
  • AMTECMuch of this chapter is based on the article by Cole (1983)
  • 7.1 Operating Principle
  • 7.2 Vapor Pressure
  • 7.3 Pressure Drop in the Sodium Vapor Column
  • 7.4 Mean Free Path of Sodium Ions
  • 7.5 Characteristics of an AMTEC
  • 7.6 Efficiency
  • 7.7 Thermodynamics of an AMTEC
  • References
  • Radio-Noise Generators
  • 8.1 Sole Section
  • References
  • Part II
  • The World of Hydrogen
  • Fuel Cells
  • 9.1 Introduction
  • 9.2 Voltaic Cells
  • 9.3 Fuel Cell Classification
  • 9.3.1 Temperature of Operation
  • 9.3.2 State of the Electrolyte
  • 9.3.3 Type of Fuel
  • 9.3.4 Chemical Nature of the Electrolyte
  • 9.4 Fuel Cell Reactions
  • 9.4.1 Alkaline Electrolytes
  • 9.4.2 Acid Electrolytes
  • 9.4.3 Molten Carbonate Electrolytes
  • 9.4.4 Ceramic Electrolytes
  • 9.4.5 Methanol Fuel Cells
  • 9.4.6 Formic Acid Fuel Cells
  • 9.5 Typical Fuel Cell Configurations
  • 9.5.1 Demonstration Fuel Cell (KOH).
  • 9.5.2 Phosphoric Acid Fuel Cells (PAFC)
  • 9.5.2.1 A Fuel Cell Battery (Engelhard)
  • 9.5.2.2 First-Generation Fuel Cell Power Plant
  • 9.5.3 Molten Carbonate Fuel Cells (MCFC)
  • 9.5.3.1 Second-Generation Fuel Cell Power Plant
  • 9.5.4 Ceramic Fuel Cells (SOFC)
  • 9.5.4.1 Third-Generation Fuel Cell Power Plant
  • 9.5.4.2 High Temperature Ceramic Fuel Cells
  • 9.5.4.3 Low Temperature Ceramic Fuel Cells
  • 9.5.5 Solid-Polymer Electrolyte Fuel Cells
  • 9.5.5.1 Cell Construction
  • 9.5.6 Direct Methanol Fuel Cells
  • 9.5.7 Direct Formic Acid Fuel Cells (DFAFC)
  • 9.5.8 Solid Acid Fuel Cells (SAFC)
  • 9.5.9 Metallic Fuel Cells-Zinc-Air Fuel Cells
  • 9.6 Fuel Cell Applications
  • 9.6.1 Stationary Power Plants
  • 9.6.2 Automotive Power Plants
  • 9.6.3 Other Applications
  • 9.7 The Thermodynamics of Fuel Cells
  • 9.7.1 Heat of Combustion
  • 9.7.2 Free Energy
  • 9.7.3 Efficiency of Reversible Fuel Cells
  • 9.7.4 Effects of Pressure and Temperature on the Enthalpy[-12pt] and Free Energy Changes of a Reaction
  • 9.7.4.1 Enthalpy Dependence on Temperature
  • 9.7.4.2 Enthalpy Dependence on Pressure
  • 9.7.4.3 Free Energy Dependence on Temperature
  • 9.7.4.4 Free Energy Dependence on Pressure
  • 9.7.4.5 The Nernst Equation
  • 9.7.4.6 Voltage Dependence on Temperature
  • 9.8 Performance of Real Fuel Cells
  • 9.8.1 Current Delivered by a Fuel Cell
  • 9.8.2 Efficiency of Practical Fuel Cells
  • 9.8.3 V-I Characteristics of Fuel Cells
  • 9.8.3.1 Empirically Derived Characteristics
  • 9.8.3.2 Scaling Fuel Cells
  • 9.8.3.3 More Complete Empirical Characteristics of Fuel Cells
  • 9.8.4 Open-circuit Voltage
  • 9.8.5 Reaction Kinetics
  • 9.8.5.1 Reaction Rates
  • 9.8.5.2 Activation Energy
  • 9.8.5.3 Catalysis
  • 9.8.6 The Butler-Volmer Equation
  • 9.8.6.1 Exchange Currents
  • 9.8.7 Transport Losses
  • 9.8.8 Heat Dissipation by Fuel Cells.
  • 9.8.8.1 Heat Removal from Fuel Cells
  • References
  • Hydrogen Production
  • 10.1 Generalities
  • 10.2 Chemical Production of Hydrogen
  • 10.2.1 Historical
  • 10.2.2 Metal-Water Hydrogen Production
  • 10.2.3 Large-scale Hydrogen Production
  • 10.2.3.1 Partial Oxidation
  • 10.2.3.2 Steam Reforming
  • 10.2.3.3 Thermal Decomposition
  • 10.2.3.4 Syngas
  • 10.2.3.5 Shift Reaction
  • 10.2.3.6 Methanation
  • 10.2.3.7 Methanol
  • 10.2.3.8 Syn-crude
  • 10.2.4 Hydrogen Purification
  • 10.2.4.1 Desulfurization
  • 10.2.4.2 CO2 Removal
  • 10.2.4.3 CO Removal and Hydrogen Extraction
  • 10.2.4.4 Hydrogen Production Plants
  • 10.2.5 Compact Fuel Processors
  • 10.2.5.1 Formic Acid
  • 10.3 Electrolytic Hydrogen
  • 10.3.1 Introduction
  • 10.3.2 Electrolyzer Configurations
  • 10.3.2.1 Liquid Electrolyte Electrolyzers
  • 10.3.2.2 Solid-Polymer Electrolyte Electrolyzers
  • 10.3.2.3 Ceramic Electrolyte Electrolyzers
  • 10.3.2.4 High Efficiency Steam Electrolyzers
  • 10.3.3 Efficiency of Electrolyzers
  • 10.3.4 Concentration-Differential Electrolyzers
  • 10.3.5 Electrolytic Hydrogen Compression
  • 10.4 Thermolytic Hydrogen
  • 10.4.1 Direct Dissociation of Water
  • 10.4.2 Chemical Dissociation of Water
  • 10.4.2.1 Mercury-hydrobromic acid cycle
  • 10.4.2.2 Barium chromate cycle
  • 10.4.2.3 Sulfur-iodine cycle
  • 10.5 Photolytic Hydrogen
  • 10.5.1 Generalities
  • 10.5.2 Solar Photolysis
  • 10.6 Photobiologic Hydrogen Production
  • References
  • Hydrogen Storage
  • 11.1 Introduction
  • 11.1.1 DOE Targets for Automotive Hydrogen Storage
  • 11.2 Compressed Gas
  • 11.3 Cryogenic Hydrogen
  • 11.4 Storage of Hydrogen by Adsorption
  • 11.5 Storage of Hydrogen in Chemical Compounds
  • 11.5.1 Generalities
  • 11.5.2 Hydrogen Carriers
  • 11.5.3 Water Plus a Reducing Substance
  • 11.5.4 Formic Acid
  • 11.5.5 Metal Hydrides
  • 11.5.5.1 Characteristics of Hydride Materials.