Progress in optics. Volume 57 /
In the 50 years since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. The volumes in this series that have appeared up to now contain more than 300 review articles by distinguished research workers, which have become permanent record...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford :
Elsevier,
2012.
|
Colección: | Progress in Optics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- FrontCover; Progress In Optics; Copyrightpage; Contributors; Table of Contents; Preface; The Microscope in a Computer: Image Synthesis from Three-Dimensional Full-Vector Solutions of Maxwell's Equations at the Nanometer Scale; 1. Introduction; 2. Basic Principles of Electromagnetics and Optical Coherence; 3. Structure of the Optical Imaging System; 3.1 Illumination; 3.1.1 Coherent Illumination; 3.1.2 Incoherent Illumination; Anchor 8; 3.2.1 Modal Methods; 3.2.2 Finite Methods; 3.3 Collection; 3.3.1 Fourier Analysis; 3.3.2 Green's-Function Formalism; 3.4 Refocusing; 3.4.1 Periodic Scatterers
- 3.4.2 Non-periodic Scatterers4. Implementation Examples; 5. Summary; Acknowledgments; References; Microstructures andNanostructures in Nature; 1. Introduction; 2. Sample Preparation and Electron Microscopy; 3. Microstructures and Nanostructures of Selected Natural Objects; 4. Discussion; 5. Conclusion; Acknowledgments; References; Quantitative Phase Imaging; 1. Introduction; 2. The Physical Significance of the Measurable Phase; 2.1 Deterministic Fields: Monochromatic Plane Waves; 2.2 Random Fields: Spatially and Temporally Broadband; 2.3 Coherence Time and Area as Inverse Bandwidths
- 2.4 Stochastic Wave Equation2.5 Deterministic Signal Associated with a Random Field; 2.6 van Cittert-Zernike Theorem; 2.7 The Phase of Cross-correlations as the Measurable Quantity; 3. Principles of Full-field QPI; 3.1 Figures of Merit in QPI; 3.1.1 Temporal Sampling: Acquisition Rate; 3.1.2 Spatial Sampling: Transverse Resolution; 3.1.3 Temporal Stability: Temporal Phase Sensitivity; 3.1.4 Spatial Uniformity: Spatial Phase Sensitivity; 3.1.5 Summary of QPI Approaches and Figures of Merit; 3.2 Off-axis QPI Methods; 3.2.1 Digital Holographic Microscopy (DHM); 3.2.1.1 Principle
- 3.2.1.2 Applications3.2.2 Hilbert Phase Microscopy (HPM); 3.2.2.1 Principle; 3.2.2.2 Applications; 3.3 Phase-Shifting QPI Methods; 3.3.1 Digitally Recorded Interference Microscopy with Automatic Phase-Shifting (DRIMAPS); 3.3.1.1 Principle; 3.3.1.2 Applications; 3.3.2 Optical Quadrature Microscopy (OQM); 3.3.2.1 Principle; 3.3.2.2 Applications; 3.4 Common-Path QPI Methods; 3.4.1 Fourier Phase Microscopy (FPM); 3.4.1.1 Principle; 3.4.1.2 Applications; 3.4.2 Diffraction Phase Microscopy (DPM); 3.4.2.1 Principle; 3.4.2.2 Applications; 3.5 White-Light QPI Methods
- 3.5.1 White-Light Diffraction Phase Microscopy (wDPM)3.5.1.1 Principle; 3.5.1.2 Applications; 3.5.2 Spatial Light Interference Microscopy (SLIM); 3.5.3 Instantaneous Spatial Light Interference Microscopy (iSLIM); 3.5.3.1 Principle; 3.5.3.2 Applications; 3.5.4 QPI Using the Transport of Intensity Equation (TIE); 3.5.4.1 Principle; 3.5.4.2 Biological applications; 4. Spatial Light Interference Microscopy; 4.1 Principle; 4.2 Experimental Setup; 4.3 Applications; 4.3.1 Topography and Refractometry; 4.3.2 Laplace Phase Microscopy; 4.3.3 Cell Dynamics; 4.3.4 Cell Growth