Cargando…

Mechanisms of DNA Repair /

Mechanisms of DNA Repair.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Doetsch, Paul W. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier/Academic Press, 2012.
Colección:Progress in molecular biology and translational science ; v. 110.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 SCIDIR_ocn802058502
003 OCoLC
005 20231117044736.0
006 m o d
007 cr cnu---unuuu
008 120714s2012 ne af ob 001 0 eng d
040 |a E7B  |b eng  |e pn  |e rda  |c E7B  |d OCLCO  |d N$T  |d YDXCP  |d UIU  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCF  |d OCLCQ  |d FEM  |d UAB  |d MEU  |d D6H  |d OCLCQ  |d TFW  |d OCLCQ  |d OL$  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 968013482  |a 969080451 
020 |a 9780123876669  |q (electronic bk.) 
020 |a 0123876664  |q (electronic bk.) 
020 |a 0123876656 
020 |a 9780123876652 
020 |z 9780123876652 
035 |a (OCoLC)802058502  |z (OCoLC)968013482  |z (OCoLC)969080451 
050 4 |a QH467  |b .M43 2012eb 
072 7 |a HEA  |x 039060  |2 bisacsh 
072 7 |a MED  |x 107000  |2 bisacsh 
082 0 4 |a 616.042  |2 22 
245 0 0 |a Mechanisms of DNA Repair /  |c edited by Paul W. Doetsch. 
264 1 |a Amsterdam ;  |a Boston :  |b Elsevier/Academic Press,  |c 2012. 
300 |a 1 online resource (xii, 323 pages, 16 unnumbered pages of plates) :  |b color illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Progress in molecular biology and translational science,  |x 1877-1173 ;  |v v. 110 
546 |a Text in English. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Front Cover; Mechanisms of DNA Repair; Copyright; Contents; Contributors; Preface; Chpater 1: Dynamics of Lesion Processing by Bacterial Nucleotide Excision Repair Proteins; I. Structural Insights of Bacterial Nucleotide Excision Repair; A. Overview of the Process; B. Dynamics of the UvrA2B2-DNA Complex; C. Kinetic Proofreading as Part of a Dynamic DNA Damage Recognition Process: Role of ATP; II. So Few DNA Repair Proteins, So Much DNA: Defining the Big Problem; A. Challenge of Repair Inside a Bacterial Cell; B. Potential Modes of Damage Site Location 
505 8 |a B. Base Excision RepairVIII. Conclusions; Acknowledgments; References; Chpater 3: The Functions of MutL in Mismatch Repair: The Power of Multitasking; I. Overview of DNA Mismatch Repair; A. DNA Mismatch Repair in Escherichia coli; B. Strand Discrimination in Mismatch Repair in Organisms Lacking MutH; C. The Multiple Faces of MutL; II. MutL is a Multidomain Protein; A. The ATPase Domain; B. DNA Binding; C. The Dimerization Domain; III. Architecture of the Endonuclease Domain; A. The Endonuclease Site; B. MutL is an Mn2+-Dependent Endonuclease; C. The Regulatory Zn2+-Binding Site 
505 8 |a C. Necessary Experimental Components to Observe Single Molecules in ActionIII. Damage Searching by UvrA2 and UvrA2B2; IV. Future Directions; A. Observing Protein Nanomachines at Work; B. Overcoming the Brownian Motion Barrier; References; Chpater 2: Transcription-Coupled DNA Repair in Prokaryotes; I. Introduction; II. Background: Genomic Heterogeneity in NER and the Discovery of TCR; III. The Role of RNA Polymerase in TCR; IV. The Role of Mfd in TCR; V. The Role of UvrA in TCR; VI. The Role of UvrB in TCR; VII. Other Examples of Transcription-Related DNA Damage Processing in Bacteria; A. NusA 
505 8 |a Chpater 5: Regulation of Base Excision Repair in Eukaryotes by Dynamic Localization StrategiesI. Base Excision Repair; A. Requirements and Limitations of Base Excision Repair; B. Regulation of BER: Current Concepts and Observations; C. Dynamic Localization; II. Dynamic Localization of BER Proteins; A. General Pathway; B. Requirements to Dynamically Localize; C. Examples of Dynamic Localization in Response to Genotoxic Stress; D. Insight into Dynamic Localization; III. Hypotheses on the Orchestration of Dynamic Localization; References 
505 8 |a D. The Endonuclease Activity of MutLIV. Regulation of the Endonuclease Activity of MutL; A. DNA Binding; B. Stimulatory Effect of the Processivity Clamp; C. Mismatch Dependency; V. Concluding Remarks; References; Chpater 4: The Fpg/Nei Family of DNA Glycosylases: Substrates, Structures, and Search for Damage; I. Introduction; II. Fpg/Nei Phylogeny; III. Fpg/Nei Structures; A. Introduction; B. Substrate Preference; C. Comparison of Structures of the Fpg/Nei Family; IV. Glycosylases Search for Lesions; V. Concluding Remarks; Acknowledgments; References 
520 |a Mechanisms of DNA Repair. 
650 0 |a DNA repair. 
650 2 |a DNA Repair  |0 (DNLM)D004260 
650 6 |a ADN  |x R�eparation.  |0 (CaQQLa)201-0047976 
650 7 |a HEALTH & FITNESS  |x Diseases  |x Genetic.  |2 bisacsh 
650 7 |a MEDICAL  |x Genetics.  |2 bisacsh 
650 7 |a DNA repair  |2 fast  |0 (OCoLC)fst00886599 
700 1 |a Doetsch, Paul W.,  |e editor. 
830 0 |a Progress in molecular biology and translational science ;  |v v. 110.  |x 1877-1173 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780123876652  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/18771173/110  |z Texto completo