Cargando…

Magnetic positioning equations : theory and applications /

In the study of Magnetic Positioning Equations, it is possible to calculate and create analytical expressions for the intensity of magnetic fields when the coordinates x, y and z are known; identifying the inverse expressions is more difficult. This book is designed to explore the discovery of how t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Esh, Mordechay
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : Academic Press, 2012.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn798669625
003 OCoLC
005 20231117044734.0
006 m o d
007 cr cnu---unuuu
008 120710s2012 xx o 000 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d CDX  |d DEBSZ  |d UKMGB  |d OCLCQ  |d B24X7  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ  |d NJR  |d OCLCQ  |d U3W  |d D6H  |d COO  |d WYU  |d LEAUB  |d VLY  |d VT2  |d OCLCQ  |d OCLCO  |d LUU  |d OCLCQ  |d OCLCO 
016 7 |a 016094262  |2 Uk 
019 |a 1066403553  |a 1235838811 
020 |a 9780123985057  |q (electronic bk.) 
020 |a 0123985056  |q (electronic bk.) 
020 |a 9781280878817 
020 |a 1280878819 
035 |a (OCoLC)798669625  |z (OCoLC)1066403553  |z (OCoLC)1235838811 
050 4 |a QC754.2.M3  |b E84 2012 
082 0 4 |a 538/.3  |2 23 
100 1 |a Esh, Mordechay. 
245 1 0 |a Magnetic positioning equations :  |b theory and applications /  |c Mordechay Esh. 
260 |a [Place of publication not identified] :  |b Academic Press,  |c 2012. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a In the study of Magnetic Positioning Equations, it is possible to calculate and create analytical expressions for the intensity of magnetic fields when the coordinates x, y and z are known; identifying the inverse expressions is more difficult. This book is designed to explore the discovery of how to get the coordinates of analytical expressions x, y and z when the intensity of the magnetic fields are known. The discovery also deals with the problem of how to analyze, define and design any type of transmitter along with its positioning equation(s). Presents new simple mathematical solution expressions. Describes how to solve analytically the 6D systems filing Defines practical multiple turns coil transmitters and their positioning equations Uses optimization methods with positioning equations to improve the sensitivity problem The book gives more theoretical approach to define magnetic positioning equations. 
500 |a Title from publisher's Web site (ScienceDirect, viewed on July 10, 2012). 
505 0 |a Front Cover; Magnetic Positioning Equations: Theory and Applications; Copyright page; Table of Contents; Preface; About the book; About the author; 1 Introduction; 2 Magnetic Fields; 2.1 Single-Wire Magnetic Field; 2.2 Magnetic Geometric Factor (G); 2.3 Magnetic Field of Triangular Wires; 3 First Magnetic Positioning Equation; 3.1 Resolving Factor G; 3.2 Triangular Couple; 3.3 Multiple-Turn Coils; 4 Magnetic Positioning System; 4.1 Detector Rotation Matrix; 4.2 Solution of the Rotation Matrix; 4.2.1 Singular Cases; 4.3 Detector Coordinates; 5 Equations of Quadrilateral Coils 
505 8 |a 5.1 Triple Quadrilaterals5.2 Angle Rotation Coils; 5.3 Coil Design; 5.3.1 Eight-Step Procedure-Coil Design; 5.4 ARC Coils -- Triple Quadrilaterals; 5.5 XYZ Coils -- Quadrilateral Symmetric Triple; 6 Quad Quadrilateral Coil Equations; 6.1 Real ARC Quad Coil Design; 6.2 Real XYZ Coil Design; 6.2.1 Quad Quadrilaterals -- Bisymmetric; 6.2.2 Quad Quadrilaterals -- Symmetric; 6.2.3 XYZ Coils -- Discussion; 6.3 Manipulation Properties; 6.3.1 Shifting; 6.3.2 Rotating; 6.3.3 Magnification; 7 Distortions and Disturbances; Optimal Estimation Methods; 7.1 Scan System for ARC Coils 
505 8 |a 7.1.1 Minimization of the Positioning Equations7.1.2 Minimization of the Measurement Errors; 7.2 Scan System for XYZ Coils; 7.2.1 Minimization of the Positioning Equations; 7.2.2 Minimization of the Measurement Errors; 7.3 G Distances; 7.4 Vertex Problem; 8 Detectors; 8.1 Energy Detectors; 8.2 Detector Coils; 8.2.1 ARC Detectors; 8.2.2 XYZ Detectors; 9 Coefficients Method; 9.1 Ten Steps to Positioning Equations; 9.2 Examples; 9.2.1 Triangular Couple; 9.2.2 Two Quadrilaterals; 9.2.3 Triad Triangles; 9.3 Two-Axis Detector Positioning Equations; 10 Positioning Equations -- 3D Coils 
505 8 |a 10.1 3D Triangles10.2 3D Quadrilateral Coils; 10.3 3D Coefficient Method; 10.3.1 Cubic Coils; 10.4 One-Axis Detector Positioning Equations; Open Issues; A Quadratic to Quartic Equations; B Matrix Structure 
650 0 |a Magnetic fields  |x Mathematics. 
650 0 |a Magnetic fields  |x Measurement. 
650 6 |a Champs magn�etiques  |0 (CaQQLa)201-0022055  |x Math�ematiques.  |0 (CaQQLa)201-0380112 
650 7 |a Magnetic fields  |x Mathematics  |2 fast  |0 (OCoLC)fst01005701 
650 7 |a Magnetic fields  |x Measurement  |2 fast  |0 (OCoLC)fst01005702 
776 0 8 |i Print version:  |z 9780123985057 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780123985057  |z Texto completo