Cargando…
Tabla de Contenidos:
  • Machine generated contents note: pt. I Materials and structure
  • 1. Thermal barrier coatings prepared by electron beam physical vapor deposition (EB-PVD) / D. Zhang
  • 1.1. Introduction
  • 1.2. Preparation process and parameters
  • 1.3. Preparation processes of two-layered thermal barrier coatings (TBCs)
  • 1.4. Factors affecting thermal cyclic behaviour of TBCs
  • 1.5. Preparation of graded thermal barrier coatings (GTBCs)
  • 1.6. Failure mechanism
  • 1.7. Conclusion
  • 1.8. References
  • 2. Ceramic thermal barrier coating materials / H. Dong
  • 2.1. Introduction
  • 2.2. State-of-the-art ceramic thermal barrier coating (TBC) material
  • yttria stabilized zirconia (YSZ)
  • 2.3. Zirconia doped with one or more oxides
  • 2.4. Yttria stabilized hafnia and other alternative ceramic TBC materials
  • 2.5. Lanthanum compounds, silicates and rare earth oxides
  • 2.6. (Ca1
  • xMgx)Zr4(PO4)6 (CMZP), perovskite oxides and metal-glass composite.
  • 2.7. Future trends
  • 2.8. References
  • 3. Metallic coatings for high-temperature oxidation resistance / X. Peng
  • 3.1. Introduction
  • 3.2. Oxidation-resistant metallic coatings and their fabrication techniques
  • 3.3. Metallic coatings as bond coats for thermal barrier coatings (TBCs)
  • 3.4. Conclusions
  • 3.5. Acknowledgements
  • 3.6. References
  • 4. Nanostructured thermal barrier coatings / Q.H. Yu
  • 4.1. Introduction
  • 4.2. Spray-drying process making powders
  • 4.3. Phase composition and microstructure of nanostructured thermal barrier coatings (TBCs)
  • 4.4. Mechanical properties
  • 4.5. Thermophysical properties and the failure behavior
  • 4.6. Conclusion
  • 4.7. References
  • pt. II Processing and spraying techniques
  • 5. Plasma spraying for thermal barrier coatings: processes and applications / K.A. Khor
  • 5.1. Introduction
  • 5.2. Basic plasma concepts
  • 5.3. Plasma spraying
  • 5.4. Applications of plasma spraying
  • 5.5. Conclusions
  • 5.6. Acknowledgements.
  • 5.7. References
  • 6. Processing, microstructures and properties of thermal barrier coatings by electron beam physical vapor deposition (EB-PVD) / Q. Wu
  • 6.1. Introduction
  • 6.2. Description of the physical principles of electron beam physical vapor deposition (EB-PVD)
  • 6.3. Manufacturing of thermal barrier coatings (TBCs) by EB-PVD
  • 6.4. EB-PVD TBC microstructure and its advantages over plasma-sprayed coatings
  • 6.5. Hot-fatigue behavior and failure mechanisms of TBCs
  • 6.6. References
  • 7. Processing, microstructures and properties of thermal barrier coatings (TBCs) by plasma spraying (PS) / L. Chen
  • 7.1. Introduction
  • 7.2. Processing of thermal barrier coatings (TBCs) by plasma spraying (PS)
  • 7.3. Microstructures of TBCs processed by PS
  • 7.4. Properties of TBCs processed by PS
  • 7.5. Conclusion
  • 7.6. References
  • 8. Plasma-sprayed thermal barrier coatings with segmentation cracks / L. Zhou
  • 8.1. Introduction
  • 8.2. Manufacturing of segmented thermal barrier coatings (TBCs).
  • 8.3. Microstructure of segmented TBCs
  • 8.4. Thermophysical and mechanical properties of segmented TBCs
  • 8.5. Thermal shock resistance and associate failure mechanism
  • 8.6. Future trends
  • 8.7. References
  • 9. Detonation gun sprayed thermal barrier coatings / C. Sun
  • 9.1. Introduction
  • 9.2. Detonation gun (D-gun) sprayed thermal barrier coatings (TBCs)
  • 9.3. TBCs deposited through arc ion plating (AIP)/D-gun two-step technology
  • 9.4. Future trends
  • 9.5. Conclusion
  • 9.6. References
  • pt. III Performance of thermal barrier coatings
  • 10. Oxidation and hot corrosion of thermal barrier coatings (TBCs) / Y.X. Song
  • 10.1. Introduction
  • 10.2. Oxidation of thermal barrier coatings
  • 10.3. Failure mechanisms of TBCs
  • 10.4. The degradation mechanisms experienced by TBC systems exposed to deposits
  • 10.5. Conclusions
  • 10.6. References
  • 11. Failure mechanism of thermal barrier coatings by electron beam physical vapor deposition (EB-PVD) under thermomechanical coupled loads / C. Chen.
  • 11.1. Introduction
  • 11.2. Establishment of gas turbine service environment simulation system
  • 11.3. Failure mechanism of EB-PVD TBC under in-plane thermal gradient coupled with mechanical loading
  • 11.4. Failure mechanism of EB-PVD TBC under 3-D thermal gradient coupled with mechanical loading
  • 11.5. Conclusions
  • 11.6. References
  • 12. Non-destructive evaluation (NDE) of the failure of thermal barrier coatings / G. Chen
  • 12.1. Introduction
  • 12.2. Failure of thermal barrier coatings (TBCs)
  • 12.3. Development of failure inspection methods
  • 12.4. Future trends
  • 12.5. References
  • 13. Substrate and bond coat related failure of thermal barrier coatings / R.T. Wu
  • 13.1. Introduction
  • 13.2. Substrate related failure of thermal barrier coatings (TBCs)
  • 13.3. Compatibility issues of nickel-based single-crystal superalloys with thermal barrier coating systems
  • 13.4. Bond coat related failure of TBCs
  • 13.5. Effect of bond coat on the TBC degradation mechanisms.
  • 13.6. Conclusions and future trends
  • 13.7. References
  • 14. Life prediction of thermal barrier coatings / X.G. Yang
  • 14.1. Introduction
  • 14.2. The mechanical behavior of thermal barrier coating (TBC) systems under elevated temperatures
  • 14.3. Life prediction for TBCs
  • 14.4. Future trends
  • 14.5. Conclusion
  • 14.6. References
  • 15. New materials, technologies and processes in thermal barrier coatings / J. Wu
  • 15.1. Introduction
  • 15.2. Chemically modified yttria stabilized zirconia (YSZ)
  • 15.3. Alternate low thermal conductivity (& kappa;) materials
  • 15.4. Microstructure modification
  • 15.5. Advanced processing technologies
  • 15.6. Future trends
  • 15.7. References.