Cargando…

The infinite-dimensional topology of function spaces /

In this book we study function spaces of low Borel complexity. Techniques from general topology, infinite-dimensional topology, functional analysis and descriptive set theory are primarily used for the study of these spaces. The mix of methods from several disciplines makes the subject particularly...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mill, J. van
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : North Holland, �2002.
Colección:North-Holland mathematical library ; v. 64.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn772855789
003 OCoLC
005 20231117044654.0
006 m o d
007 cr cnu---unuuu
008 120116r20022001ne ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d OPELS  |d OCLCQ  |d TFW  |d OCLCF  |d DEBSZ  |d D6H  |d UKMGB  |d LEAUB  |d NLW  |d S2H  |d OCLCO  |d OCLCQ  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB739790  |2 bnb 
016 7 |a 017593355  |2 Uk 
020 |a 9780080929774  |q (electronic bk.) 
020 |a 008092977X  |q (electronic bk.) 
020 |z 044450849X 
020 |z 9780444508492 
035 |a (OCoLC)772855789 
050 4 |a QA323  |b .M53 2002eb 
072 7 |a MAT  |x 031000  |2 bisacsh 
082 0 4 |a 515.73  |2 22 
100 1 |a Mill, J. van. 
245 1 4 |a The infinite-dimensional topology of function spaces /  |c Jan van Mill. 
260 |a Amsterdam ;  |a Boston :  |b North Holland,  |c �2002. 
300 |a 1 online resource (1 volume) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Originally published: 2001. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a In this book we study function spaces of low Borel complexity. Techniques from general topology, infinite-dimensional topology, functional analysis and descriptive set theory are primarily used for the study of these spaces. The mix of methods from several disciplines makes the subject particularly interesting. Among other things, a complete and self-contained proof of the Dobrowolski-Marciszewski-Mogilski Theorem that all function spaces of low Borel complexity are topologically homeomorphic, is presented. In order to understand what is going on, a solid background in infinite-dimensional topology is needed. And for that a fair amount of knowledge of dimension theory as well as ANR theory is needed. The necessary material was partially covered in our previous book `Infinite-dimensional topology, prerequisites and introduction'. A selection of what was done there can be found here as well, but completely revised and at many places expanded with recent results. A `scenic' route has been chosen towards the Dobrowolski-Marciszewski-Mogilski Theorem, linking the results needed for its proof to interesting recent research developments in dimension theory and infinite-dimensional topology. The first five chapters of this book are intended as a text for graduate courses in topology. For a course in dimension theory, Chapters 2 and 3 and part of Chapter 1 should be covered. For a course in infinite-dimensional topology, Chapters 1, 4 and 5. In Chapter 6, which deals with function spaces, recent research results are discussed. It could also be used for a graduate course in topology but its flavor is more that of a research monograph than of a textbook; it is therefore more suitable as a text for a research seminar. The book consequently has the character of both textbook and a research monograph. In Chapters 1 through 5, unless stated otherwise, all spaces under discussion are separable and metrizable. In Chapter 6 results for more general classes of spaces are presented. In Appendix A for easy reference and some basic facts that are important in the book have been collected. The book is not intended as a basis for a course in topology; its purpose is to collect knowledge about general topology. The exercises in the book serve three purposes: 1) to test the reader's understanding of the material 2) to supply proofs of statements that are used in the text, but are not proven there 3) to provide additional information not covered by the text. Solutions to selected exercises have been included in Appendix B. These exercises are important or difficult. 
505 0 |a Introduction; Chapter 1. Basic topology. Chapter 2. Basic combinatorial topology. Chapter 3. Basic dimension theory. Chapter 4. Basic ANR theory. Chapter 5. Basic infinite-dimensional topology. Chapter 6. Function spaces. Appendix A. Preliminaries. Appendix B. Answers to selected exercises. Appendix C. Notes and comments. Bibliography. Special Symbols. Author Index. Subject Index 
650 0 |a Function spaces. 
650 0 |a Topology. 
650 0 |a Dimension theory (Topology) 
650 0 |a Infinite-dimensional manifolds. 
650 6 |a Espaces fonctionnels.  |0 (CaQQLa)201-0051572 
650 6 |a Topologie.  |0 (CaQQLa)201-0001193 
650 6 |a Th�eorie de la dimension (Topologie)  |0 (CaQQLa)201-0022543 
650 6 |a Vari�et�es de dimension infinie.  |0 (CaQQLa)201-0244451 
650 7 |a MATHEMATICS  |x Transformations.  |2 bisacsh 
650 7 |a Dimension theory (Topology)  |2 fast  |0 (OCoLC)fst00893848 
650 7 |a Function spaces  |2 fast  |0 (OCoLC)fst00936058 
650 7 |a Infinite-dimensional manifolds  |2 fast  |0 (OCoLC)fst00972429 
650 7 |a Topology  |2 fast  |0 (OCoLC)fst01152692 
776 0 8 |i Print version:  |a Mill, J. van.  |t Infinite-dimensional topology of function spaces.  |d Amsterdam ; London : North Holland, 2002  |x 0924-6509  |z 044450849X  |w (OCoLC)49690973 
830 0 |a North-Holland mathematical library ;  |v v. 64. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780080929774  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/09246509/64  |z Texto completo