Cargando…

Inequalities : theory of majorization and its applications /

Although they play a fundamental role in nearly all branches of mathematics, inequalities are usually obtained by ad hoc methods rather than as consequences of some underlying ""theory of inequalities."" For certain kinds of inequalities, the notion of majorization leads to such...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Marshall, Albert W. (Autor), Olkin, Ingram (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Academic Press, 1979.
Colección:Mathematics in science and engineering ; v. 143.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 SCIDIR_ocn767689361
003 OCoLC
005 20231117044645.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 111206s1979 nyu ob 001 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCO  |d UIU  |d OCLCF  |d YDXCP  |d N$T  |d COO  |d OCLCQ  |d TEFOD  |d OCLCQ  |d DEBSZ  |d VLY  |d INARC  |d OCLCO  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 910877986  |a 1162105672  |a 1397722794 
020 |a 0124737501  |q (electronic bk.) 
020 |a 9780124737501  |q (electronic bk.) 
020 |a 9780080959979  |q (electronic bk.) 
020 |a 0080959970  |q (electronic bk.) 
035 |a (OCoLC)767689361  |z (OCoLC)910877986  |z (OCoLC)1162105672  |z (OCoLC)1397722794 
042 |a dlr 
050 4 |a QA295  |b .M42 
055 0 3 |a QA295  |b M42 1979 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.26  |2 23 
084 |a 31.40  |2 bcl 
084 |a 31.25  |2 bcl 
084 |a 31.41  |2 bcl 
084 |a PB 37  |2 blsrissc 
084 |a SK 400  |2 rvk 
084 |a SK 490  |2 rvk 
100 1 |a Marshall, Albert W.,  |e author. 
245 1 0 |a Inequalities :  |b theory of majorization and its applications /  |c Albert W. Marshall, Ingram Olkin. 
246 3 |a Majorization and its applications 
260 |a New York :  |b Academic Press,  |c 1979. 
300 |a 1 online resource (xx, 569 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematics in science and engineering ;  |v v. 143 
588 0 |a Print version record. 
504 |a Includes bibliographical references (pages 531-552) and indexes. 
505 0 |a Front Cover; Inequalities: Theory of Majorization and its Applications; Copyright Page; Table of Contents; Dedication; Preface; Acknowledgments; Basic Notation and Terminology; Part I: Theory of Memorization; Chapter 1. Introduction; A. Motivation and Basic Definitions; B. Majorization as a Partial Ordering; C. Order-Preserving Functions; D. Various Generalizations of Majorization; Chapter 2. Doubly Stochastic Matrices; A. Doubly Stochastic Matrices and Permutation Matrices; B. Characterization of Majorization Using Doubly Stochastic Matrices 
505 8 |a C. Doubly Substochastic Matrices and Weak MajorizationD. Doubly Superstochastic Matrices and Weak Majorization; E. Orderings on D; F. Proofs of Birkhoff's Theorem and Refinements; G. Classes of Doubly Stochastic Matrices; H. More Examples of Doubly Stochastic and Doubly Substochastic Matrices; I. Properties of Double Stochastic Matrices; J. Diagonal Equivalence of Nonnegative Matrices and Doubly Stochastic Matrices; Chapter 3. Schur-Convex Functions; A. Characterization of Schur-Convex Functions; B. Compositions Involving Schur-Convex Functions 
505 8 |a C. Some General Classes of Schur-Convex FunctionsD. Examples I. Sums of Convex Functions; E. Examples II. Products of Logarithmically Concave Functions; F. Examples III. Elementary Symmetric Functions; G. Symmetrization of Convex and Schur-Convex Functions: Muirhead's Theorem; H. Shur-Convex Functions on D and Their Extension to Rn; I. Miscellaneous Specific Examples; J. Integral Transformations Preserving Schur-Convexity; Chapter 4. Equivalent Conditions for Majorization; A. Characterization by Linear Transformations; B. Characterization in Terms of Order-Preserving Functions 
505 8 |a C. A Geometric CharacterizationChapter 5. Preservation and Generation of Majorization; A. Operations Preserving Majorization; B. Generation of Majorization; C. Maximal and Minimal Vectors under Constraints; D. Majorization in Integers; Chapter 6. Rearrangements and Majorization; A. Majorizations from Additions of Vectors; B. Majorizations from Functions of Vectors; C. Weak Majorizations from Rearrangements; D. L-Superadditive Functions-Properties and Examples; E. Inequalities without Majorization; F. A Relative Arrangement Partial Order; Part II: Mathematical Applications 
505 8 |a Chapter 7. Combinatorial AnalysisA. Some Preliminaries on Graphs, Incidence Matrices, and Networks; B. Conjugate Sequences; C. The Theorem of Gale and Ryser; D. Some Applications of the Gale-Ryser Theorem; E. s-Graphs and a Generalization of the Gale-Ryser Theorem; F. Tournaments; G. Edge Colorings in Graphs; Chapter 8. Geometric Inequalities; A. Inequalities for the Angles of a Triangle; B. Inequalities for the Sides of a Triangle; C. Inequalities for the Exradii and Altitudes; D. Inequalities for the Sides, Exradii, and Medians; E. Isoperimetric-Type Inequalities for Plane Figures 
520 |a Although they play a fundamental role in nearly all branches of mathematics, inequalities are usually obtained by ad hoc methods rather than as consequences of some underlying ""theory of inequalities."" For certain kinds of inequalities, the notion of majorization leads to such a theory that is sometimes extremely useful and powerful for deriving inequalities. Moreover, the derivation of an inequality by methods of majorization is often very helpful both for providing a deeper understanding and for suggesting natural generalizations.<br>Anyone wishing to employ majorization as a tool in appli. 
546 |a English. 
650 0 |a Inequalities (Mathematics) 
650 6 |a In&#xFFFD;egalit&#xFFFD;es (Math&#xFFFD;ematiques)  |0 (CaQQLa)201-0028036 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Math&#xFFFD;ematiques.  |2 eclas 
650 7 |a Inequalities (Mathematics)  |2 fast  |0 (OCoLC)fst00972020 
650 7 |a Konvexit&#xFFFD;at  |2 gnd  |0 (DE-588)4114284-6 
650 7 |a Statistik  |2 gnd  |0 (DE-588)4056995-0 
650 7 |a Ungleichung  |2 gnd  |0 (DE-588)4139098-2 
650 1 7 |a Ongelijkheden.  |2 gtt 
650 7 |a INEQUALITIES.  |2 nasat 
650 7 |a APPLICATIONS OF MATHEMATICS.  |2 nasat 
650 7 |a In&#xFFFD;egalit&#xFFFD;es (Math&#xFFFD;ematiques)  |2 ram 
700 1 |a Olkin, Ingram,  |e author. 
776 0 8 |i Print version:  |a Marshall, Albert W.  |t Inequalities.  |d New York : Academic Press, 1979  |w (DLC) 79050218  |w (OCoLC)5126052 
830 0 |a Mathematics in science and engineering ;  |v v. 143. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780124737501  |z Texto completo