Cargando…

Introduction to continuum mechanics /

Continuum mechanics studies the response of materials to different loading conditions. The concept of tensors in introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation and matrix operations is clearly presented. A...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lai, W. Michael, 1930-
Otros Autores: Rubin, David, 1942-, Krempl, Erhard
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford ; New York : Pergamon Press, 1993.
Edición:3rd ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 SCIDIR_ocn761189290
003 OCoLC
005 20231117044638.0
006 m o d
007 cr |||||||||||
008 111116s1993 enka ob 001 0 eng d
010 |z  93030117  
040 |a VLB  |b eng  |e pn  |c VLB  |d OPELS  |d OCLCQ  |d E7B  |d OCLCF  |d OCLCQ  |d UIU  |d OCLCQ  |d LEAUB  |d VLY  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1162392502 
020 |z 0080417000 
020 |z 9780080417004  |q (hardcover) 
020 |z 0080417019  |q (flexicover) 
020 |z 9780080417011  |q (flexicover) 
020 |a 0080983871 
020 |a 9780080983875 
020 |a 1299194095 
020 |a 9781299194090 
035 |a (OCoLC)761189290  |z (OCoLC)1162392502 
050 4 |a QA808.2  |b .L3 1993 
082 0 4 |a 531 
100 1 |a Lai, W. Michael,  |d 1930- 
245 1 0 |a Introduction to continuum mechanics /  |c W. Michael Lai, David Rubin, Erhard Krempl. 
250 |a 3rd ed. 
260 |a Oxford ;  |a New York :  |b Pergamon Press,  |c 1993. 
300 |a 1 online resource (xiv, 556 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 550-551) and index. 
520 |a Continuum mechanics studies the response of materials to different loading conditions. The concept of tensors in introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, and the book contains an abundance of illustrative examples and problems, many with solutions. 
520 8 |a Through the addition of more advanced material, this popular introduction to modern continuum mechanics has been fully revised to serve a dual purpose for introductory courses in undergraduate engineering curriculum, and for beginning graduate courses. 
588 0 |a Print version record. 
505 0 |a Front Cover; Introduction to Continuum Mechanics; Copyright Page; Table of Contents; Preface to the Third Edition; Preface to the First Edition; The Authors; Chapter 1. Introduction; 1.1 Continuum Theory; 1.2 Contents of Continuum Mechanics; Chapter 2. Tensors; Part A The Indicial Notation; Part B Tensors; Part C Tensor Calculus; Part D Curvilinear Coordinates; Chpter 3. Kinematics of a Continuum; 3.1 Description of Motions of a Continuum; 3.2 Material Description and Spatial Description; 3.3 Material Derivative; 3.4 Acceleration of a Particle in a Continuum; 3.5 Displacement Field 
505 8 |a 3.6 Kinematic Equations For Rigid Body Motion3.7 Infinitesimal Deformations; 3.8 Geometrical Meaning of the Components of the Infinitesimal Strain Tensor; 3.9 Principal Strain; 3.10 Dilatation; 3.11 The Infinitesimal Rotation Tensor; 3.12 Time Rate of Change of a Material Element; 3.13 The Rate of Deformation Tensor; 3.14 The Spin Tensor and the Angular Velocity Vector; 3.15 Equation of Conservation of Mass; 3.16 Compatibility Conditions for Infinitesimal Strain Components; 3.17 Compatibility Conditions for the Rate of Deformation Components; 3.18 Deformation Gradient 
505 8 |a 3.19 Local Rigid Body Displacements3.20 Finite Deformation; 3.21 Polar Decomposition Theorem; 3.22 Calculation of the Stretch Tensor from the Deformation Gradient; 3.23 Right Cauchy-Green Deformation Tensor; 3.24 Lagrangian Strain Tensor; 3.25 Left Cauchy-Green Deformation Tensor; 3.26 Eulerian Strain Tensor; 3.27 Compatibility Conditions for Components of Finite Deformation Tensor; 3.28 Change of Area due to Deformation; 3.29 Change of Volume due to Deformation; 3.30 Components of Deformation Tensors in other Coordinates; 3.31 Current Configuration as the Reference Configuration; Problems 
505 8 |a Chapter 4. Stress4.1 Stress Vector; 4.2 Stress Tensor; 4.3 Components of Stress Tensor; 4.4 Symmetry of Stress Tensor -- Principle of Moment of Momentum; 4.5 Principal Stresses; 4.6 Maximum Shearing Stress; 4.7 Equations of Motion -- Principle of Linear Momentum; 4.8 Equations of Motion in Cylindrical and Spherical Coordinates; 4.9 Boundary Condition for the Stress Tensor; 4.10 Piola Kirchhoff Stress Tensors; 4.11 Equations of Motion Written With Respect to the Reference Configuration; 4.12 Stress Power; 4.13 Rate of Heat Flow Into an Element by Conduction; 4.14 Energy Equation 
546 |a English. 
650 0 |a Continuum mechanics. 
650 6 |a M�ecanique des milieux continus.  |0 (CaQQLa)201-0022033 
650 7 |a Continuum mechanics  |2 fast  |0 (OCoLC)fst00876787 
700 1 |a Rubin, David,  |d 1942- 
700 1 |a Krempl, Erhard. 
776 0 8 |i Print version:  |a Lai, W. Michael, 1930-  |t Introduction to continuum mechanics.  |b 3rd ed.  |d Oxford ; New York : Pergamon Press, 1993  |z 0080417000  |w (DLC) 93030117  |w (OCoLC)28633506 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780080417004  |z Texto completo