|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_ocn760173084 |
003 |
OCoLC |
005 |
20231117044635.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
111110s2012 maua ob 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e pn
|c OPELS
|d CDX
|d NTE
|d OCLCQ
|d YDXCP
|d EBLCP
|d E7B
|d MHW
|d REDDC
|d OCLCQ
|d N$T
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d OCLCF
|d OCLCQ
|d LOA
|d ICA
|d AGLDB
|d LVT
|d K6U
|d LIP
|d PIFAG
|d FVL
|d ZCU
|d MERUC
|d OCLCQ
|d U3W
|d CHVBK
|d OCLCO
|d STF
|d WRM
|d D6H
|d OCLCQ
|d VTS
|d ICG
|d YDX
|d OCLCO
|d INT
|d VT2
|d AU@
|d OCLCO
|d OCLCQ
|d OCLCO
|d WYU
|d OCLCQ
|d OCLCO
|d OCLCA
|d S9I
|d OCLCO
|d OCLCA
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d LEAUB
|d DKC
|d OCLCQ
|d OCLCO
|d OCLCA
|d UKCRE
|d VLY
|d LUN
|d AJS
|d S2H
|d OCLCO
|d OCLCQ
|d OCL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 759686465
|a 916415846
|a 962188745
|a 972038352
|a 991944944
|a 1037713553
|a 1038684304
|a 1048292086
|a 1055365827
|a 1058098944
|a 1058744303
|a 1066678023
|a 1081280051
|a 1096218710
|a 1124751830
|a 1124975987
|a 1153464738
|a 1162053078
|a 1228527236
|
020 |
|
|
|a 9780123870209
|q (electronic bk.)
|
020 |
|
|
|a 0123870208
|q (electronic bk.)
|
020 |
|
|
|a 9780123870216
|q (electronic bk.)
|
020 |
|
|
|a 0123870216
|q (electronic bk.)
|
020 |
|
|
|a 1283272822
|
020 |
|
|
|a 9781283272827
|
020 |
|
|
|a 9786613272829
|
020 |
|
|
|a 6613272825
|
035 |
|
|
|a (OCoLC)760173084
|z (OCoLC)759686465
|z (OCoLC)916415846
|z (OCoLC)962188745
|z (OCoLC)972038352
|z (OCoLC)991944944
|z (OCoLC)1037713553
|z (OCoLC)1038684304
|z (OCoLC)1048292086
|z (OCoLC)1055365827
|z (OCoLC)1058098944
|z (OCoLC)1058744303
|z (OCoLC)1066678023
|z (OCoLC)1081280051
|z (OCoLC)1096218710
|z (OCoLC)1124751830
|z (OCoLC)1124975987
|z (OCoLC)1153464738
|z (OCoLC)1162053078
|z (OCoLC)1228527236
|
050 |
|
4 |
|a QH352
|b .K47 2012
|
072 |
|
7 |
|a NAT
|x 010000
|2 bisacsh
|
072 |
|
7 |
|a NAT
|x 045040
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 026000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 020000
|2 bisacsh
|
080 |
|
|
|a 574.3:519.226
|
082 |
0 |
4 |
|a 577.8/80285
|2 23
|
084 |
|
|
|a ST 250
|2 rvk
|
084 |
|
|
|a WC 7000
|2 rvk
|
100 |
1 |
|
|a K�ery, Marc.
|
245 |
1 |
0 |
|a Bayesian population analysis using WinBUGS :
|b a hierarchical perspective /
|c Marc Kery and Michael Schaub ; foreword by Steven R. Beissinger.
|
250 |
|
|
|a 1st ed.
|
260 |
|
|
|a Waltham, MA :
|b Academic Press,
|c 2012.
|
300 |
|
|
|a 1 online resource (xvii, 535 pages) :
|b illustrations (some color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
520 |
|
|
|a Bayesian statistics has exploded into biology and its sub-disciplines, such as ecology, over the past decade. The free software program WinBUGS and its open-source sister OpenBugs is currently the only flexible and general-purpose program available with which the average ecologist can conduct standard and non-standard Bayesian statistics. Comprehensive and richly-commented examples illustrate a wide range of models that are most relevant to the research of a modern population ecologist. All WinBUGS/OpenBUGS analyses are completely integrated in software R. Includes complete documentation of all R and WinBUGS code required to conduct analyses and shows all the necessary steps from having the data in a text file out of Excel to interpreting and processing the output from WinBUGS in R.
|
505 |
0 |
|
|a Preface Acknowledgements 1. Introduction 2. Very brief introduction to Bayesian statistical modeling 3. Introduction to the generalized linear model (GLM): The simplest model for count data 4. Introduction to random effects: The conventional Poisson GLMM for count data 5. State-space models 6. Estimation of population size 7. Estimation of survival probabilities using capture-recapture data 8. Estimation of survival probabilities using mark-recovery data 9. Multistate capture-recapture models 10. Estimation of survival and recruitment using the Jolly-Seber model 11. Integrated population models 12. Metapopulation modeling of abundance using hierarchical Poisson regression 13. Metapopulation modeling of species distributions using hierarchical logistic regression 14. Concluding remarks Appendices References.
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
546 |
|
|
|a English.
|
630 |
0 |
0 |
|a WinBUGS.
|
650 |
|
0 |
|a Population biology
|x Data processing.
|
650 |
|
2 |
|a Bayes Theorem
|0 (DNLM)D001499
|
650 |
|
2 |
|a Population Characteristics
|0 (DNLM)D011154
|
650 |
|
2 |
|a Textbooks
|
650 |
|
6 |
|a Biologie des populations
|0 (CaQQLa)201-0062278
|x Informatique.
|0 (CaQQLa)201-0380011
|
650 |
|
6 |
|a Th�eor�eme de Bayes.
|0 (CaQQLa)000272232
|
650 |
|
7 |
|a NATURE
|x Ecology.
|2 bisacsh
|
650 |
|
7 |
|a NATURE
|x Ecosystems & Habitats
|x Wilderness.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Environmental Science.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Life Sciences
|x Ecology.
|2 bisacsh
|
630 |
0 |
7 |
|a WinBUGS
|2 fast
|0 (OCoLC)fst01796027
|
650 |
|
7 |
|a Population biology
|x Data processing
|2 fast
|0 (OCoLC)fst01071536
|
650 |
|
7 |
|a Bayes-Verfahren
|2 gnd
|0 (DE-588)4204326-8
|
650 |
|
7 |
|a Dem�okologie
|2 gnd
|0 (DE-588)4149059-9
|
650 |
|
7 |
|a Populationsbiologie.
|2 idszbz
|
650 |
|
7 |
|a Populationsdynamik.
|2 idszbz
|
650 |
|
7 |
|a Biometrie.
|2 idszbz
|
650 |
|
7 |
|a Bayes-Entscheidungstheorie.
|2 idszbz
|
650 |
|
7 |
|a Statistisches Modell.
|2 idszbz
|
655 |
|
7 |
|a Textbooks
|2 fast
|0 (OCoLC)fst01423863
|
655 |
|
7 |
|a Textbooks.
|2 lcgft
|
700 |
1 |
|
|a Schaub, Michael.
|
776 |
0 |
8 |
|i Print version:
|a K�ery, Marc.
|t Bayesian population analysis using WinBUGS.
|b 1st ed.
|d Waltham, MA : Academic Press, 2012
|z 9780123870209
|w (DLC) 2011029641
|w (OCoLC)731925446
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780123870209
|z Texto completo
|