Interface science and composites /
The goal of 'interface science and composites' is to facilitate the manufacture of technological materials with optimized properties on the basis of a comprehensive understanding of the molecular structure of interfaces and their resulting influence on composite materials processes. From t...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Academic Press,
2011.
|
Edición: | 1st ed. |
Colección: | Interface science and technology ;
v. 18. |
Temas: | |
Acceso en línea: | Texto completo Texto completo |
Tabla de Contenidos:
- Note continued: 2.2. Structure and Chemical Composition of Solid Surfaces
- 2.3. Adsorption Isotherms
- 2.3.1. IUPAC Classification of Adsorption Isotherms
- 2.3.2. Langmuir Isotherm
- 2.3.3. Brunauer-Emmett-Teller (BET) Isotherm
- 2.4. Measurement of Adsorption Isotherms
- 2.4.1. Gravimetric Measurement
- 2.4.2. Volumetric Measurement
- 2.4.2.1. Pressure Swing Adsorption (PSA)
- 2.4.2.2. Temperature Swing Adsorption (TSA)
- 2.4.3. Gas Chromatography Mesurement
- 2.5. Infinite and Finite Concentration
- 2.5.1. Solid-gas Interaction at Infinite Dilution
- 2.5.1.1. Adsorption Gibbs free energy
- 2.5.1.2. London Dispersive Component
- 2.5.1.3. Acid-Base Component
- 2.5.2. Solid-Gas Interaction at a Finite Concentration
- 2.5.2.1. Equilibrium Spreading Pressure and Surface Free Energy
- 2.5.2.2. Inverse Gas Chromatography at a Finite Concentration
- 2.6. Summary
- References
- 3. Solid-Liquid Interaction
- 3.1. Introduction
- 3.2. Surface Energetics.
- Note continued: 3.3. Contact Angle and Surface Tension
- 3.3.1. Sessile Drop as a Force Balance
- 3.3.2. Spreading Pressure
- 3.3.3. Hysteresis of Contact Angle Measurement
- 3.3.4. Surface Energy Measurements
- 3.3.4.1. One-liquid Tensiometric Method
- 3.3.4.2. Two-liquid Tensiometric Method
- 3.3.4.3. Three-liquid Tensiometric Method
- 3.3.5. Contact Angle Measurements
- 3.3.5.1. Tilting Plate Method
- 3.3.5.2. Wicking Method
- 3.3.5.3. Sessile Drop Method
- 3.3.5.4. Atomic Force Microscopy Method
- 3.3.6. Surface Tension Parameters of Liquids and Solids
- 3.3.6.1. Apolar Liquids
- 3.3.6.2. Polar Liquids
- 3.3.6.3. Synthetic Polymers
- 3.3.7. Solubility
- 3.3.7.1. Cohesive Energy
- 3.3.7.2. Solubility Parameter
- 3.3.7.3. Expanded Solubility Parameters
- 3.3.8. Surface Treatments
- 3.3.8.1. Wet Treatments
- 3.3.8.2. Dry Treatments
- 3.4. Associated Phenomena and Applications
- 3.4.1. Electrostatic Forces
- 3.4.1.1. Electric Double Layer.
- Note continued: 3.4.1.2. Charged Surface in Water
- 3.4.1.3. Charged Surfaces in Electrolyte
- 3.4.1.4. Applications
- 3.4.2. Self-Assembling Systems
- 3.4.2.1. Thermodynamic Equations of Self-assembly
- 3.4.2.2. Formation of Different Aggregates
- 3.4.2.3. Critical Micelle Concentration
- 3.4.2.4. Phase Separation Versus Micellization
- 3.4.2.5. Applications
- 3.5. Summary
- References
- 4. Solid-Solid Interfaces
- 4.1. Introduction
- 4.2. Adhesion at Solid-Solid Interfaces
- 4.2.1. Theories of Adhesion
- 4.2.2. Contribution of Thermodynamic Adsorption to Adhesion
- 4.2.3. Free Energies and Work of Adhesion
- 4.3. London Dispersion and Acid-Base Interaction
- 4.3.1. London Dispersion Force
- 4.3.1.1. Quantum mechanical theory of dispersion force
- 4.3.2. Acid-Base Interactions
- 4.3.2.1. Introduction
- 4.3.2.2. Hydrogen Bonding
- 4.3.2.3. Work of Adhesion
- 4.3.2.4. Drago's Approach
- 4.3.2.5. Gutmann's Numbers
- 4.3.2.6. Approaches of van Oss, Good, and Chaudhury.
- Note continued: 4.3.2.7. IR spectroscopic tools to access acid-base strength
- 4.3.2.8. Density of interacting sites
- 4.4. Mechanisms of Adhesion
- 4.4.1. Mechanical Interlocking
- 4.4.2. Electronic Theory
- 4.4.3. Theory of Weak Boundary Layers
- 4.4.4. Diffusion Theory
- 4.4.5. Intermolecular Bonding
- 4.4.6. Characterization of Adhesion
- 4.5. Adhesive Control
- 4.5.1. Non-deformable Solid Interfaces in Various Conditions
- 4.5.1.1. In vacuum
- 4.5.1.2. Forces due to capillary condensation
- 4.5.1.3. Non-deformable solids in condensable vapor
- 4.5.2. Deformable Solids
- 4.5.2.1. Hertz
- 4.5.2.2. Johnson, Kendall, and Roberts (JKR)
- 4.5.2.3. Derjaguin, Muller, and Toporov (DMT)
- 4.5.2.4. Maugis and Dugdale
- 4.5.2.5. Muller, Yushchenko, and Derjaguin (MYD)/Burgess, Hughes, and Whit (BHW)
- 4.5.2.6. Liquid bridge
- 4.6. Adhesive Behaviors at Interfaces
- 4.6.1. Introduction
- 4.6.2. Particular Composites
- 4.6.3. Effect of Interfaces.
- Note continued: 4.6.4. Crack Meeting and Interfaces
- 4.6.5. Crack Resistance of Composites
- 4.6.5.1. Fracture theory
- 4.6.5.2. Stress analysis of cracks
- 4.6.5.3. Stress intensity factor
- 4.6.5.4. Critical strain energy release rate
- 4.6.5.5.J-integral
- 4.6.5.6. Experimental data and applications
- 4.6.6. Delamination at Interfaces
- 4.6.7. Bending and Compression
- 4.6.8. Adhesion of Fibers in Composites
- 4.7. Summary
- References
- 5. Interfacial Applications in Nanomaterials
- 5.1. Introduction
- 5.2. Energy Storage and Conversion Devices
- 5.2.1. Dye-sensitized Solar Cells
- 5.2.2. Lithium-Ion Batteries
- 5.2.3. Supercapacitors
- 5.3. Environmental Technologies
- 5.3.1. NOx and SOx Removals
- 5.3.1.1. Pollution Problems
- 5.3.1.2. Emission Regulation
- 5.3.1.3. NOx and SOx Storage and Reduction
- 5.3.1.4. Carbonaceous Materials
- 5.3.2. Water Purification
- 5.4. Gas Storage
- 5.4.1. Introduction
- 5.4.2. Hydrogen
- 5.4.2.1. Metal Hydrides.
- Note continued: 5.4.2.2. Carbohydrates
- 5.4.2.3. Metal-organic Frameworks
- 5.4.2.4. Carbon Materials
- 5.4.2.5. Mechanism
- 5.4.3. Carbon Dioxide Adsorption
- 5.5. Bio Technologies
- 5.5.1. Delivery Systems for Food and Drug Products
- 5.5.1.1. Oil-in-water Emulsion
- 5.5.1.2. Solid-lipid Nanoparticles
- 5.5.1.3. Molecular Complexes
- 5.5.1.4. Self-assembly Delivery Systems
- 5.5.2. Cosmetics
- 5.5.2.1. Anti-aging
- 5.5.2.2. UV Protection
- 5.5.3. Adhesion for Biological Cells
- 5.6. Carbon Nanotubes-based Composite Materials
- 5.6.1. Role of Reinforcement
- 5.6.2. Electromagnetic Interference Shielding Properties
- 5.6.3. Optical Properties
- 5.7. The Versatile Properties of Graphene
- 5.8. Summary
- References
- 6. Element and Processing
- 6.1. Introduction
- 6.2. Reinforcements
- 6.2.1. Carbon Fibers
- 6.2.1.1. Introduction
- 6.2.1.2. Structures
- 6.2.1.3. Production processes
- 6.2.1.4. Surface treatment
- 6.2.1.5.Commercial products
- 6.2.2. Glass Fibers.
- Note continued: 6.2.3. Aramid Fibers
- 6.2.4. Ultra-high-molecular-weight Polyethylene
- 6.2.5. Ceramic Fibers
- 6.2.6. Boron Fibers
- 6.2.7. Metal Fibers
- 6.2.8. Particulates (Fillers)
- 6.2.9. Reinforcement Forms
- 6.2.9.1. Multi-end and single-end rovings
- 6.2.9.2. Mats
- 6.2.9.3. Woven, stitched, braided fabrics
- 6.2.9.4. Unidirectional
- 6.2.9.5. Prepreg
- 6.3. Matrices
- 6.3.1. Polymer Matrices
- 6.3.1.1. Thormosel resins
- 6.3.1.2. Thermoplastic resins
- 6.3.2. Metal Matrices
- 6.3.2.1. Aluminum (Al)
- 6.3.2.2. Magnesium (Mg)
- 6.3.2.3. Titanium (Ti)
- 6.3.3. Ceramic Matrices
- 6.3.3.1. Horosilicate glass
- 6.3.3.2. Silicon carbide (SiC)
- 6.3.3.3. Aluminum oxide (Al2O3)
- 6.4. Fabrication Process of Composites
- 6.4.1. Hand Lay-up Molding
- 6.4.1.1. Laminate materials
- 6.4.1.2. Surface preparation and bonding
- 6.4.1.3. Laminate construction
- 6.4.1.4. Multiply Construction
- 6.4.2. Spray-up Molding.
- Note continued: 6.4.3.Compression Molding, Transfer Molding and Resin Transfer Molding
- 6.4.4. Injection Molding
- 6.4.5. Reaction Injection Molding
- 6.4.6. Pultrusion
- 6.4.7. Filament Winding
- 6.5. Applications of Composites
- 6.5.1. Sports
- 6.5.2. Aircraft
- 6.5.3. Auto-mobile Parts
- 6.5.4. Infrastructures
- 6.6. Summary
- References
- 7. Types of Composites
- 7.1. Introduction
- 7.2. Polymer Matrix Composites
- 7.2.1. Introduction
- 7.2.2. High Performance Fiber Technology
- 7.2.2.1. High-performance carbon fibers
- 7.2.2.2. High-performance organic fibers
- 7.2.3. High Performance Matrix Resins
- 7.2.4. Fiber-Matrix Interface
- 7.2.4.1. Definition of fiber-matrix interface
- 7.2.4.2. Mechanical interfacial properties of composites
- 7.2.5. Development of Composite System
- 7.3. Carbon Matrix Composites
- 7.3.1. Introduction
- 7.3.2. Structure of Carbon/Carbon Composites
- 7.3.3. Oxidation Behavior and Coating Protection of Carbon/Carbon Composites.
- Note continued: 7.3.3.1. Oxidation kinetic and mechanism
- 7.3.3.2. Coating
- 7.3.3.3.Complex systems and multilayer coatings
- 7.3.3.4.Composite coatings
- 7.3.3.5. Protection with the use of an inert gas
- 7.3.3.6. Oxidation through coating cracks
- 7.3.4. Densification
- 7.3.4.1. Resin transfer molding of carbon/carbon performs
- 7.3.4.2. Stabilization
- 7.3.4.3. Chemical vapor infiltration of carbon/carbon preforms
- 7.3.4.4. Coal-tar and petroleum pitches
- 7.3.4.5. Thermoset resins
- 7.3.4.6. Densification efficiency
- 7.3.5. One-step Manufacturing of Carbon/Carbon Composites with High Density and Oxidative Resistance
- 7.3.6. Applications of Carbon/Carbon Composites
- 7.4. Metal Matrix Composites
- 7.4.1. Introduction
- 7.4.2.Combination of Materials for Light Metal Matrix Composites
- 7.4.2.1. Reinforcements
- 7.4.2.2. Matrix alloy systems
- 7.4.3. Production and Processing of Metal Matrix Composites
- 7.4.4. Mechanism of Reinforcement.
- Note continued: 7.4.5. Influence of Interface
- 7.4.5.1. Basics of wettability and infiltration
- 7.4.6. Properties of Metal Matrix Composites
- 7.4.7. Possible Applications of Metal Matrix Composites
- 7.4.7.1. Automobile products
- 7.4.7.2. Space system
- 7.4.8. Recycling
- 7.5. Ceramic Matrix Composites
- 7.5.1. Introduction
- 7.5.2. Reinforcements
- 7.5.3. Structure and Properties of Fibers
- 7.5.3.1. Fiber structure
- 7.5.3.2. Structure formation
- 7.5.3.3. Structure parameters and fiber properties
- 7.5.4. Inorganic Fibers
- 7.5.4.1. Production processes
- 7.5.4.2. Properties of commercial products
- 7.5.5. Properties and Applications of Ceramic Matrix Composites
- 7.6. Summary
- References
- 8.Composite Characterization
- 8.1. Introduction
- 8.2. Evaluation of Reinforcement Fibers
- 8.2.1. Introduction
- 8.2.2. Chemical Techniques
- 8.2.2.1. Elemental analysis
- 8.2.2.2. Titration
- 8.2.2.3. Fiber structure
- 8.2.2.4. Fiber surface chemistry.
- Note continued: 8.2.2.5. Sizing content and composition
- 8.2.2.6. Moisture content
- 8.2.2.7. Thermal stability and oxidative resistance
- 8.2.3. Physical Techniques
- 8.2.3.1. Filament diameter
- 8.2.3.2. Density of fibers
- 8.2.3.3. Electrical resistivity
- 8.2.3.4. Coefficient of thermal expansion
- 8.2.3.5. Thermal conductivity
- 8.2.3.6. Specific heat
- 8.2.3.7. Thermal transition temperatures
- 8.2.4. Mechanical Testing of Fibers
- 8.2.4.1. Tensile properties
- 8.3. Evaluation of Matrix Resins
- 8.3.1. Introduction
- 8.3.2. Preparation of Matrix Specimen
- 8.3.2.1. Thermoset polymers
- 8.3.2.2. Thermoplastic polymers
- 8.3.2.3. Specimen machining
- 8.3.3. Chemical Analysis Techniques
- 8.3.3.1. Elemental analysis
- 8.3.3.2. Functional group and wet chemical analysis
- 8.3.3.3. Spectroscopic analysis
- 8.3.3.4. Chromatographic analysis
- 8.3.3.5. Molecular weight and molecular weight distribution analysis
- 8.3.4. Thermal and Physical Analysis Techniques.
- Note continued: 8.3.4.1. Thermal analysis
- 8.3.4.2. Rheological analysis
- 8.3.4.3. Morphology
- 8.3.4.4. Volatiles content
- 8.3.4.5. Moisture content
- 8.4. Evaluation of Reinforcement-Matrix Interface
- 8.4.1. Introduction
- 8.4.2. Wettability
- 8.4.3. Interfacial Bonding
- 8.4.3.1. Mechanical bonding
- 8.4.3.2. Electrostatic bonding
- 8.4.3.3. Chemical bonding
- 8.4.3.4. Reaction or interdiffusion bonding
- 8.4.4. Methods for Measuring Bond Strength
- 8.4.4.1. Single fiber tests
- 8.4.4.2. Bulk specimen tests
- 8.4.4.3. Micro-indentation tests
- 8.5. Evaluation of Composites
- 8.5.1. Introduction
- 8.5.2. Factors Determining the Properties
- 8.5.3. Principal Coordinate Axes
- 8.5.4. Density
- 8.5.4.1. Dry bulk density
- 8.5.4.2. Density by water displacement (Archimedean density)
- 8.5.5. Determination of Fiber Content
- 8.5.6. Coefficient of Thermal Expansion
- 8.5.6.1. Dilatometer
- 8.5.7. Thermal Conductivity
- 8.5.7.1.Comparative method
- 8.5.8. Specific Heat.
- Note continued: 8.5.8.1. Differential scanning calorimetry
- 8.5.9. Electrical Resistivity
- 8.5.9.1. Four-point probe measurements
- 8.5.10. Thermal Cycling
- 8.5.11. Tensile Modulus
- 8.5.12. Tensile Strength
- 8.5.13. Shear Strength
- 8.5.13.1. Interlaminar shear strength
- 8.5.13.2. In-plane shear tests
- 8.5.14. Flexural Strength and Modulus
- 8.5.15. Uniaxial Compressive Strength and Modulus
- 8.5.16. Fatigue
- 8.5.17. Creep
- 8.5.18. Impact Behaviors
- 8.5.19. Fracture Toughness
- 8.6. Relationship between Surface and Mechanical Interfacial Properties in Composites
- 8.6.1. Surface Free Energy and Work of Adhesions
- 8.6.2. Surface Free Energy Analysis using a Linear Fit Method
- 8.6.3. Surface Free Energy and Fractural Properties
- 8.6.4. Mechanical Approach
- 8.6.5. Energetic Approach
- 8.6.6. Weibull Distribution
- 8.6.7. Experimental Results of Composites
- 8.6.7.1. Single fiber tensile strength
- 8.6.7.2. Weibull distribution parameter.
- Note continued: 8.6.7.3. Pull-out behaviors and apparent shear strength
- 8.7. Evaluation of Laminated Composites
- 8.7.1. Introduction
- 8.7.2. Analysis of Laminated Composites
- 8.7.3. Numerical Illustration
- 8.8. Nondestructive Testing of Composites
- 8.8.1. Introduction
- 8.8.2. Techniques for Evaluating of Properties and Defects of Composites
- 8.8.2.1. Typical defects of composites
- 8.8.2.2. Nondestructive evaluation
- 8.9. Summary
- References
- 9. Modeling of Fiber-Matrix Interface in Composite Materials
- 9.1. Introduction
- 9.2. Evaluation of Fiber-Matrix Interfacial Shear Strength and Fracture Toughness
- 9.2.1. Microscopical Geometric Analysis of Fiber Distributions in Unidirectional Composites
- 9.2.2. Measurement of Interfacial Shear Strength
- 9.2.3. Measurement of Interfacial Fracture Toughness
- 9.3. Interpretation of Single-Fiber Pull-out Test
- 9.3.1. Early Observations of Single-Fiber Pull-out Test.
- Note continued: 9.3.2. Calculation of Single-Fiber Pull-out Test
- 9.3.3. Incorporation of Crack Propagation in the Evaluation of Single-Fiber Pull-out Test
- 9.3.4. Change of Fiber Diameter with Tensile Load
- 9.3.5. Fracture Mechanics of Single-Fiber Pull-out Test
- 9.3.6. Relationship Between Debonding Stress and Embedded Length
- 9.3.7. Stress Transfer from Matrix to Fibers
- 9.4. Interpretation of Single-Fiber Push-out Test
- 9.5. Interpretation of Single-Fiber Fragmentation Test
- 9.6. Fiber-Matrix Adhesion from Single-Fiber Composite Test
- 9.7. Micromechanical Modeling of Microbond Test
- 9.8. Interphase Effect on Fiber-Reinforced Polymer Composites
- 9.8.1. Introduction
- 9.8.2. Three-Phase Bridging Model
- 9.8.3. Finite-Element Model
- 9.9. Summary
- References
- 10.Comprehension of Nanocomposites
- 10.1. Introduction
- 10.2. Types of Nanocomposites
- 10.2.1. Nanoparticle-Reinforced Composites
- 10.2.2. Nanoplatelet-Reinforced Composites.
- Note continued: 10.2.3. Nanofibers-Reinforced Composites
- 10.2.4. Carbon Nanotube-Reinforced Composites
- 10.2.4.1. Introduction
- 10.2.4.2. Properties of Carbon Nanotube-Polymer Composites
- 10.2.4.3. Interfaces of Carbon Nanotube-Polymer Composites
- 10.2.5. Graphene-Based Composite Materials
- 10.2.5.1. Introduction
- 10.2.5.2. Properties of Graphene
- 10.2.5.3. Surface Treatment of Graphene
- 10.2.5.4. Graphene-Polymer Nanocomposites
- 10.3. Processing of Nanocomposites
- 10.3.1. Introduction
- 10.3.2. Solution Processing of Carbon Nanotube and Polymer
- 10.3.3. Bulk Mixing
- 10.3.4. Melt Mixing
- 10.3.5. In Situ Polymerization
- 10.4. Characterization of Nanocomposites
- 10.5. Summary
- References.