|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_ocn741521171 |
003 |
OCoLC |
005 |
20231117044610.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
110718s2011 enka ob 000 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d E7B
|d YDXCP
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d CDX
|d IDEBK
|d OPELS
|d UKMGB
|d OCLCF
|d COO
|d OCLCQ
|d OCL
|d OCLCQ
|d U3W
|d WYU
|d LEAUB
|d OL$
|d NJT
|d OCLCO
|d OCLCQ
|d OCL
|d LUU
|d OCLCO
|d OCLCQ
|d OCLCO
|
016 |
7 |
|
|a 015813075
|2 Uk
|
019 |
|
|
|a 741453518
|a 741558662
|a 816844441
|a 823129532
|a 823851626
|a 823922112
|a 824103629
|
020 |
|
|
|a 9780123877796
|q (electronic bk.)
|
020 |
|
|
|a 0123877792
|q (electronic bk.)
|
020 |
|
|
|a 9780123877802
|q (electronic bk.)
|
020 |
|
|
|a 0123877806
|q (electronic bk.)
|
020 |
|
|
|a 1283134055
|
020 |
|
|
|a 9781283134057
|
024 |
8 |
|
|a 9786613134059
|
035 |
|
|
|a (OCoLC)741521171
|z (OCoLC)741453518
|z (OCoLC)741558662
|z (OCoLC)816844441
|z (OCoLC)823129532
|z (OCoLC)823851626
|z (OCoLC)823922112
|z (OCoLC)824103629
|
050 |
|
4 |
|a QC175
|b .V43 2011eb
|
072 |
|
7 |
|a SCI
|x 041000
|2 bisacsh
|
082 |
0 |
4 |
|a 533/.7
|2 23
|
100 |
1 |
|
|a Vedenyapin, Victor.
|
245 |
1 |
0 |
|a Kinetic Boltzmann, Vlasov and related equations /
|c Victor Vedenyapin, Alexander Sinitsyn, Eugene Dulov.
|
260 |
|
|
|a London :
|b Elsevier Science Ltd.,
|c 2011.
|
300 |
|
|
|a 1 online resource (xv, 304 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in 1938 and serves as a basis of plasma physics and describes large-scale processes and galaxies in astronomy, star wind theory. This book provides a comprehensive review of both equations and presents both classical and modern applications. In addition, it discusses several open problems of great importance. <ul> <li>Reviews the whole field from the beginning to today</li> <li>Includes practical applications</li> <li>Provides classical and modern (semi-analytical) solutions</li></ul>
|
650 |
|
0 |
|a Kinetic theory of gases.
|
650 |
|
0 |
|a Evolution equations.
|
650 |
|
6 |
|a Th�eorie cin�etique des gaz.
|0 (CaQQLa)201-0008393
|
650 |
|
6 |
|a �Equations d'�evolution.
|0 (CaQQLa)201-0093181
|
650 |
|
7 |
|a SCIENCE
|x Mechanics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Evolution equations
|2 fast
|0 (OCoLC)fst00917332
|
650 |
|
7 |
|a Kinetic theory of gases
|2 fast
|0 (OCoLC)fst00987634
|
700 |
1 |
|
|a Sinitsyn, Alexander.
|
700 |
1 |
|
|a Dulov, Eugene.
|
776 |
0 |
8 |
|i Print version:
|t Boltzmann and Vlasov Equations.
|d Elsevier Science Ltd 2011
|z 9780123877796
|w (OCoLC)704388494
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780123877796
|z Texto completo
|