Handbook of mathematical formulas and integrals /
If there is a formula to solve a given problem in mathematics, you will find it in Alan Jeffrey's Handbook of Mathematical Formulas and Integrals. Thanks to its unique thumb-tab indexing feature, answers are easy to find based upon the type of problem they solve. The Handbook covers important f...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Diego :
Academic Press,
�1995.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 0 Quick Reference List of Frequently Used Data
- 0.1 Useful Identities 1
- 0.2 Complex Relationships 2
- 0.3 Constants 2
- 0.4 Derivatives of Elementary Functions 3
- 0.5 Rules of Differentiation and Integration 3
- 0.6 Standard Integrals 4
- 0.7 Standard Series 11
- 0.8 Geometry 13
- 1 Numerical, Algebraic, and Analytical Results for Series and Calculus
- 1.1 Algebraic Results Involving Real and Complex Numbers 25
- 1.2 Finite Sums 29
- 1.3 Bernoulli and Euler Numbers and Polynomials 37
- 1.4 Determinants 47
- 1.5 Matrices 55
- 1.6 Permutations and Combinations 62
- 1.7 Partial Fraction Decomposition 63
- 1.8 Convergence of Series 66
- 1.9 Infinite Products 71
- 1.10 Functional Series 73
- 1.11 Power Series 74
- 1.12 Taylor Series 79
- 1.13 Fourier Series 81
- 1.14 Asymptotic Expansions 85
- 1.15 Basic Results from the Calculus 86
- 2 Functions and Identities
- 2.1 Complex Numbers and Trigonometric and Hyperbolic Functions 101
- 2.2 Logarithms and Exponentials 112
- 2.3 The Exponential Function 114
- 2.4 Trigonometric Identities 115
- 2.5 Hyperbolic Identities 121
- 2.6 The Logarithm 126
- 2.7 Inverse Trigonometric and Hyperbolic Functions 128
- 2.8 Series Representations of Trigonometric and Hyperbolic Functions 133
- 2.9 Useful Limiting Values and Inequalities Involving Elementary Functions 136
- 3 Derivatives of Elementary Functions
- 3.1 Derivatives of Algebraic, Logarithmic, and Exponential Functions 139
- 3.2 Derivatives of Trigonometric Functions 140
- 3.3 Derivatives of Inverse Trigonometric Functions 140
- 3.4 Derivatives of Hyperbolic Functions 141
- 3.5 Derivatives of Inverse Hyperbolic Functions 142
- 4 Indefinite Integrals of Algebraic Functions
- 4.1 Algebraic and Transcendental Functions 145
- 4.2 Indefinite Integrals of Rational Functions 146
- 4.3 Nonrational Algebraic Functions 158
- 5 Indefinite Integrals of Exponential Functions
- 5.1 Basic Results 167
- 6 Indefinite Integrals of Logarithmic Functions
- 6.1 Combinations of Logarithms and Polynomials 173
- 7 Indefinite Integrals of Hyperbolic Functions
- 7.1 Basic Results 179
- 7.2 Integrands Involving Powers of sinh(bx) or cosh(bx) 180
- 7.3 Integrands Involving (a [plus or minus] bx)[superscript m] sinh(cx) or (a + bx)[superscript m] cosh(cx) 181
- 7.4 Integrands Involving x[superscript m] sinh[superscript n] x or x[superscript m] cosh[superscript n] x 183
- 7.5 Integrands Involving x[superscript m] sinh[superscript -n] x or x[superscript m] cosh[superscript -n] x 183
- 7.6 Integrands Involving (1 [plus or minus] cosh x)[superscript -m] 185
- 7.7 Integrands Involving sinh(ax)cosh[superscript -n] x or cosh(ax)sinh[superscript -n] x 185
- 7.8 Integrands Involving sinh(ax + b) and cosh(cx + d) 186
- 7.9 Integrands Involving tanh kx and coth kx 188
- 7.10 Integrands Involving (a + bx)[superscript m] sinh kx or (a + bx)[superscript m] cosh kx 189
- 8 Indefinite Integrals Involving Inverse Hyperbolic Functions
- 8.1 Basic Results 191
- 8.2 Integrands Involving x[superscript -n] arcsinh(x/a) or x[superscript -n] arccosh(x/a) 193
- 8.3 Integrands Involving x[superscript n] arctanh(x/a) or x[superscript n] arccoth(x/a) 194
- 8.4 Integrands Involving x[superscript -n] arctanh(x/a) or x[superscript -n] arccoth(x/a) 195
- 9 Indefinite Integrals of Trigonometric Functions
- 9.1 Basic Results 197
- 9.2 Integrands Involving Powers of x and Powers of sin x or cos x 197
- 9.3 Integrands Involving tan x and/or cot x 205
- 9.4 Integrands Involving sin x and cos x 207
- 9.5 Integrands Involving Sines and Cosines with Linear Arguments and Powers of x 211
- 10 Indefinite Integrals of Inverse Trigonometric Functions
- 10.1 Integrands Involving Powers of x and Powers of Inverse Trigonometric Functions 215
- 11 The Gamma, Beta, Pi, and Psi Functions
- 11.1 The Euler Integral and Limit and Infinite Product Representations for [Gamma] (x) 221
- 12 Elliptic Integrals and Functions
- 12.1 Elliptic Integrals 229
- 12.2 Jacobian Elliptic Functions 235
- 12.3 Derivatives and Integrals 237
- 12.4 Inverse Jacobian Elliptic Functions 237
- 13 Probability Integrals and the Error Function
- 13.1 Normal Distribution 239
- 13.2 The Error Function 242
- 14 Fresnel Integrals, Sine and Cosine Integrals
- 14.1 Definitions, Series Representations, and Values at Intinity 245
- 14.2 Definitions, Series Representations, and Values at Infinity 247
- 15 Definite Integrals
- 15.1 Integrands Involving Powers of x 249
- 15.2 Integrands Involving Trigonometric Functions 251
- 15.3 Integrands Involving the Exponential Function 254
- 15.4 Integrands Involving the Hyperbolic Function 256
- 15.5 Integrands Involving the Logarithmic Function 256
- 16 Different Forms of Fourier Series
- 16.1 Fourier Series for f(x) on -[pi] [less than or equal] x [less than or equal] [pi] 257
- 16.2 Fourier Series for f(x) on -L [less than or equal] x [less than or equal] L 258
- 16.3 Fourier Series for f(x) on a [less than or equal] x [less than or equal] b 258
- 16.4 Half-Range Fourier Cosine Series for f(x) on 0 [less than or equal] x [less than or equal] [pi] 259
- 16.5 Half-Range Fourier Cosine Series for f(x) on 0 [less than or equal] x [less than or equal] L 259
- 16.6 Half-Range Fourier Sine Series for f(x) on 0 [less than or equal] x [less than or equal] [pi] 260
- 16.7 Half-Range Fourier Sine Series for f(x) on 0 [less than or equal] x [less than or equal] L 260
- 16.8 Complex (Exponential) Fourier Series for f(x) on -[pi] [less than or equal] x [less than or equal] [pi] 260
- 16.9 Complex (Exponential) Fourier Series for f(x) on -L [less than or equal] x [less than or equal] L 261
- 16.10 Representative Examples of Fourier Series 261
- 16.11 Fourier Series and Discontinuous Functions 265
- 17 Bessel Functions
- 17.1 Bessel's Differential Equation 269
- 17.2 Series Expansions for J[subscript v](x) and Y[subscript v](x) 270
- 17.3 Bessel Functions of Fractional Order 272
- 17.4 Asymptotic Representations for Bessel Functions 273
- 17.5 Zeros of Bessel Functions 273
- 17.6 Bessel's Modified Equation 274
- 17.7 Series Expansions for I[subscript v](x) and K[subscript v](x) 276
- 17.8 Modified Bessel Functions of Fractional Order 277
- 17.9 Asymptotic Representations of Modified Bessel Functions 278
- 17.10 Relationships between Bessel Functions 278
- 17.11 Integral Representations of J[subscript n](x), I[subscript n](x), and K[subscript n](x) 281
- 17.12 Indefinite Integrals of Bessel Functions 281
- 17.13 Definite Integrals Involving Bessel Functions 282
- 17.14 Spherical Bessel Functions 283
- 18 Orthogonal Polynomials
- 18.2 Legendre Polynomials P[subscript n](x) 286
- 18.3 Chebyshev Polynomials T[subscript n](x) and U[subscript n](x) 290
- 18.4 Laguerre Polynomials L[subscript n](x) 294
- 18.5 Hermite Polynomials H[subscript n](x) 296
- 19 Laplace Transformation
- 20 Fourier Transforms
- 21 Numerical Integration
- 21.1 Classical Methods 315
- 22 Solutions of Standard Ordinary Differential Equations
- 22.2 Separation of Variables 323
- 22.3 Linear First-Order Equations 323
- 22.4 Bernoulli's Equation 324
- 22.5 Exact Equations 325
- 22.6 Homogeneous Equations 325
- 22.7 Linear Differential Equations 326
- 22.8 Constant Coefficient Linear Differential Equations
- Homogeneous Case 327
- 22.9 Linear Homogeneous Second-Order Equation 330
- 22.10 Constant Coefficient Linear Differential Equations
- Inhomogeneous Case 331
- 22.11 Linear Inhomogeneous Second-Order Equation 333
- 22.12 Determination of Particular Integrals by the Method of Undetermined Coefficients 334
- 22.13 The Cauchy-Euler Equation 336
- 22.14 Legendre's Equation 337
- 22.15 Bessel's Equations 337
- 22.16 Power Series and Frobenius Methods 339
- 22.17 The Hypergeometric Equation 344
- 22.18 Numerical Methods 345
- 23 Vector Analysis
- 23.1 Scalars and Vectors 353
- 23.2 Scalar Products 358
- 23.3 Vector Products 359
- 23.4 Triple Products 360
- 23.5 Products of Four Vectors 361
- -- 23.6 Derivatives of Vector Functions of a Scalar t 361
- 23.7 Derivatives of Vector Functions of Several Scalar Variables 362
- 23.8 Integrals of Vector Functions of a Scalar Variable t 363
- 23.9 Line Integrals 364
- 23.10 Vector Integral Theorems 366
- 23.11 A Vector Rate of Change Theorem 368
- 23.12 Useful Vector Identities and Results 368
- 24 Systems of Orthogonal Coordinates
- 24.1 Curvilinear Coordinates 369
- 24.2 Vector Operators in Orthogonal Coordinates 371
- 24.3 Systems of Orthogonal Coordinates 371
- 25 Partial Differential Equations and Special Functions
- 25.1 Fundamental Ideas 381
- 25.2 Method of Separation of Variables 385
- 25.3 The Sturm-Liouville Problem and Special Functions 387
- 25.4 A First-Order System and the Wave Equation 390
- 25.5 Conservation Equations (Laws) 391
- 25.6 The Method of Characteristics 392
- 25.7 Discontinuous Solutions (Shocks) 396
- 25.8 Similarity Solutions 398
- 25.9 Burgers's Equation, the KdV Equation, and the KdVB Equation 400
- 26 The z-Transform
- 26.1 The z-Transform and Transform Pairs 403
- 27 Numerical Approximation
- 27.2 Economization of Series 411
- 27.3 Pade Approximation 413
- 27.4 Finite Difference Approximations to Ordinary and Partial Derivatives 415.