Cargando…

Antisense technology : applications / Part B :

Antisense technology is the ability to manipulate gene expression within mammalian cells providing powerful experimental approaches for the study of gene function and gene regulation. For example, methods which inhibit gene expression permit studies probing the normal function of a specific product...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Phillips, M. Ian
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Academic Press, 2000.
Colección:Methods in enzymology ; v. 314.
Temas:
Acceso en línea:Texto completo
Texto completo
Tabla de Contenidos:
  • Front Cover; Antisense Technology; Copyright Page; Table of Contents; Contributors to Volume 314; Preface; Volumes in Series; Section I: Antisense Receptor Targets; Chapter 1. In Vivo Modulation of G Proteins and Opioid Receptor Function by Antisense Oligodeoxynucleotides; Chapter 2. Targeting Brain GABAA Receptors with Antisense Oligonucleotides: Implications for Epilepsy; Chapter 3. Delivery of Antisense DNA by Vectors for Prolonged Effects in Vitro and in Vivo; Chapter 4. Antisense Mapping: Assessing Functional Significance of Genes and Splice Variants
  • Chapter 5. In Vitro and in Vivo Effects of Antisense on alpha2-Adrenoceptor ExpressionChapter 6. Design and Efficacy of a Serotonin-2A Receptor Antisense Oligodeoxynucleotide; Chapter 7. Reduction of Neurotransmitter Receptor and G-Protein Expression in Vivo and in Vitro by Antisense Oligodeoxynucleotide Treatment; Chapter 8. Use of Expression of Antisense mRNA for Convertases 1 and 2 in Prohormone Processing; Section II: Antisense Neuroscience Targets; Chapter 9. Strategies for the Design and Delivery of Antisense Oligonucleotides in Central Nervous System
  • Chapter 10. Use of Antisense Expression Plasmids to Attenuate G-Protein Expression in Primary NeuronsChapter 11. Gene Functional Analysis in Nervous System; Chapter 12. RNA Mapping: Selection of Potent Oligonucleotide Sequences for Antisense Experiments; Chapter 13. Effects of Centrally Administered Antisense Oligodeoxynucleotides on Feeding Behavior and Hormone Secretion; Chapter 14. Blockade of Neuropathic Pain by Antisense Targeting of Tetrodotoxin-Resistant Sodium Channels in Sensory Neurons; Chapter 15. Antisense Approach for Study of Cell Adhesion Molecules in Central Nervous System
  • Chapter 16. Sequence Design and Practical Implementation of Antisense Oligonucleotides in NeuroendocrinologyChapter 17. Localization of Oligonucleotides in Brain by in Situ Hybridization; Chapter 18. Use of Antisense Oligonucleotides in Human Neuronal and Astrocytic Cultures; Cnapter 19. Pharmacokinetic Properties of Oligonucleotides in Brain; Chapter 20. Antisense Oligonucleotides: Preparation and in Vivo Application to Rat Brain; Chapter 21. Application of Antisense Techniques to Characterize Neuronal Ion Channels in Vitro; Section III: Antisense in Nonneuronal Tissues
  • Chapter 22. Antisense Inhibition of Sodium-Calcium ExchangerChapter 23. Targeted Delivery of Antisense Oligonucleotides to Parenchymal Liver Cell in Vivo; Chapter 24. Antisense Methods for Discrimination of Phenotypic Properties of Closely Related Gene Products: Jun Kinase Family; Chapter 25. Evaluation of Biological Role of c-Jun N-Terminal Kinase Using an Antisense Approach; Chapter 26. Role of Antisense in Kidney Cells; Chapter 27. Use of Antisense Techniques in Rat Renal Medulla; Chapter 28. Antisense Approaches to in Vitro Organ Culture