MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn707452398
003 OCoLC
005 20231117044559.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 110315s1990 maua ob 101 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCF  |d OPELS  |d E7B  |d OCL  |d OCLCO  |d YDXCP  |d OCLCQ  |d OCLCO  |d OCLCA  |d UKAHL  |d OCLCQ  |d VLY  |d LUN  |d OCLCQ  |d OCLCO  |d COM  |d OCLCO  |d OCLCQ 
019 |a 961523160  |a 1100915410  |a 1162090554 
020 |a 9780124074750  |q (electronic bk.) 
020 |a 0124074758  |q (electronic bk.) 
020 |a 9781483260204  |q (e-book) 
020 |a 1483260208 
035 |a (OCoLC)707452398  |z (OCoLC)961523160  |z (OCoLC)1100915410  |z (OCoLC)1162090554 
042 |a dlr 
050 4 |a QA432  |b .I84 1990 
082 0 4 |a 515/.72  |2 20 
084 |a SD 1988  |2 rvk 
084 |a SK 910  |2 rvk 
084 |a SK 920  |2 rvk 
245 0 0 |a Iterative methods for large linear systems /  |c edited by David R. Kincaid and Linda J. Hayes. 
260 |a Boston :  |b Academic Press,  |c �1990. 
300 |a 1 online resource (xxx, 319 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2011.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2011  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |a Front Cover; Iterative Methods for Large Linear Systems; Copyright Page; Preface; Authors of Chapters; Papers Presented at Conference; Professor David M. Young, Jr.; Photographs from Conference; Table of Contents; Chapter1. Fourier Analysis of Two-Level Hierarchical Basis Preconditioners; 1 Introduction; 21D, Linear S; 3 2D, Bilinear S, Bilinear A; 4 2D, Bilinear, 5-Point A; 5 3D, Trilinear S, 7-Point A; 6 Concluding Remarks; Acknowledgements; References; Chapter 2. An Algebraic Framework for Hierarchical Basis Functions Multilevel Methods or the Search for 'Optimal'Preconditioners 
505 8 |a 1 Introduction2 The Algebraic Framework for Two-Level Hierarchical Basis FunctionMethods; 3 Recursive Definition of Preconditioner; 4 The Relative Condition Number of Mwith Respect to A; 5 Concluding Remarks; References; Chapter 3. ELLPACK and ITPACK as Research Tools for Solving Elliptic Problems; 1 Background; 2 ELLPACK and ITPACK; 3 Some Basic Questions; 4 Direct vs. Iterative Methods; 5 Different Elliptic Problems; 6Symmetry; 7 Extended Network Analogy; 8 Orders of Accuracy; 9 Choice of Mesh; 10 Computational Complexity; 11 3D Problems; Acknowledgement; References 
505 8 |a Chapter 4. Preconditioned Iterative Methods for Indefinite Symmetric ToeplitzSystems1 Introduction; 2 Toeplitz and Circulant Matrices; 3 Solution Methods; 4 Test Matrix Preconditioners; 5 Test Matrices; 6 Computed Spectra; Acknowlegements; References; Chapter 5.A Local Relaxation Scheme (Ad-Hoc SOR) Applied to Nine Pointand Block Difference Equations; 1 History; 2 The Method; 3 Nine Point Application: Cross Derivatives; 4 Block Iteration; Acknowledgements; References; Chapter 6. Block Iterative Methods for Cyclically Reduced Non-Self-AdjointElliptic Problems; 1 Introduction 
505 8 |a 2 The Reduced System for the Convection-Diffusion Equation3 Bounds for Solving the Convection-Diffusion Equation; 4 Numerical Expe; Acknowledgements; References; Chapter 7. Toward an Effective Two-Parameter SOR Method; 1 Background; 2 Singular Value Decomposition and Orthogonal Similarities; 3 Two-Parameter SOR; 4 A Numerical Example; Acknowledgements; References; Appendix; Chapter 8. Relaxation Parameters for the IQE Iterative Procedure for Solving Semi-Implicit Navier-StokesDifference Equations; 1 Introduction; 2 The Continuous and Discrete Problems; 3 The IQE Iterative Method 
520 |a Iterative Methods for Large Linear Systems. 
546 |a English. 
650 0 |a Iterative methods (Mathematics)  |v Congresses. 
650 0 |a Vector processing (Computer science)  |v Congresses. 
650 0 |a Parallel processing (Electronic computers)  |v Congresses. 
650 6 |a It�eration (Math�ematiques)  |0 (CaQQLa)201-0091650  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 6 |a Traitement vectoriel  |0 (CaQQLa)201-0186314  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 6 |a Parall�elisme (Informatique)  |0 (CaQQLa)201-0057785  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 7 |a Iterative methods (Mathematics)  |2 fast  |0 (OCoLC)fst00980827 
650 7 |a Parallel processing (Electronic computers)  |2 fast  |0 (OCoLC)fst01052928 
650 7 |a Vector processing (Computer science)  |2 fast  |0 (OCoLC)fst01164669 
650 7 |a Iteration  |2 gnd  |0 (DE-588)4123457-1 
650 7 |a Kongress  |2 gnd  |0 (DE-588)4130470-6 
650 7 |a Lineares System  |2 gnd  |0 (DE-588)4125617-7 
650 7 |a It�eration (Math�ematiques)  |x Congr�es.  |2 ram 
650 7 |a Parall�elisme (Informatique)  |x Congr�es.  |2 ram 
655 2 |a Congress  |0 (DNLM)D016423 
655 7 |a Conference papers and proceedings.  |2 fast  |0 (OCoLC)fst01423772 
655 7 |a Conference papers and proceedings.  |2 lcgft 
655 7 |a Actes de congr�es.  |2 rvmgf  |0 (CaQQLa)RVMGF-000001049 
655 7 |a Kongress.  |2 swd 
700 1 |a Kincaid, David  |q (David Ronald) 
700 1 |a Hayes, Linda J. 
776 0 8 |i Print version:  |t Iterative methods for large linear systems.  |d Boston : Academic Press, �1990  |w (DLC) 89028453  |w (OCoLC)20593620 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780124074750  |z Texto completo