|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_ocn707452398 |
003 |
OCoLC |
005 |
20231117044559.0 |
006 |
m o d |
007 |
cr bn||||||abp |
007 |
cr bn||||||ada |
008 |
110315s1990 maua ob 101 0 eng d |
040 |
|
|
|a OCLCE
|b eng
|e pn
|c OCLCE
|d OCLCQ
|d OCLCF
|d OPELS
|d E7B
|d OCL
|d OCLCO
|d YDXCP
|d OCLCQ
|d OCLCO
|d OCLCA
|d UKAHL
|d OCLCQ
|d VLY
|d LUN
|d OCLCQ
|d OCLCO
|d COM
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 961523160
|a 1100915410
|a 1162090554
|
020 |
|
|
|a 9780124074750
|q (electronic bk.)
|
020 |
|
|
|a 0124074758
|q (electronic bk.)
|
020 |
|
|
|a 9781483260204
|q (e-book)
|
020 |
|
|
|a 1483260208
|
035 |
|
|
|a (OCoLC)707452398
|z (OCoLC)961523160
|z (OCoLC)1100915410
|z (OCoLC)1162090554
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA432
|b .I84 1990
|
082 |
0 |
4 |
|a 515/.72
|2 20
|
084 |
|
|
|a SD 1988
|2 rvk
|
084 |
|
|
|a SK 910
|2 rvk
|
084 |
|
|
|a SK 920
|2 rvk
|
245 |
0 |
0 |
|a Iterative methods for large linear systems /
|c edited by David R. Kincaid and Linda J. Hayes.
|
260 |
|
|
|a Boston :
|b Academic Press,
|c �1990.
|
300 |
|
|
|a 1 online resource (xxx, 319 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2011.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2011
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Iterative Methods for Large Linear Systems; Copyright Page; Preface; Authors of Chapters; Papers Presented at Conference; Professor David M. Young, Jr.; Photographs from Conference; Table of Contents; Chapter1. Fourier Analysis of Two-Level Hierarchical Basis Preconditioners; 1 Introduction; 21D, Linear S; 3 2D, Bilinear S, Bilinear A; 4 2D, Bilinear, 5-Point A; 5 3D, Trilinear S, 7-Point A; 6 Concluding Remarks; Acknowledgements; References; Chapter 2. An Algebraic Framework for Hierarchical Basis Functions Multilevel Methods or the Search for 'Optimal'Preconditioners
|
505 |
8 |
|
|a 1 Introduction2 The Algebraic Framework for Two-Level Hierarchical Basis FunctionMethods; 3 Recursive Definition of Preconditioner; 4 The Relative Condition Number of Mwith Respect to A; 5 Concluding Remarks; References; Chapter 3. ELLPACK and ITPACK as Research Tools for Solving Elliptic Problems; 1 Background; 2 ELLPACK and ITPACK; 3 Some Basic Questions; 4 Direct vs. Iterative Methods; 5 Different Elliptic Problems; 6Symmetry; 7 Extended Network Analogy; 8 Orders of Accuracy; 9 Choice of Mesh; 10 Computational Complexity; 11 3D Problems; Acknowledgement; References
|
505 |
8 |
|
|a Chapter 4. Preconditioned Iterative Methods for Indefinite Symmetric ToeplitzSystems1 Introduction; 2 Toeplitz and Circulant Matrices; 3 Solution Methods; 4 Test Matrix Preconditioners; 5 Test Matrices; 6 Computed Spectra; Acknowlegements; References; Chapter 5.A Local Relaxation Scheme (Ad-Hoc SOR) Applied to Nine Pointand Block Difference Equations; 1 History; 2 The Method; 3 Nine Point Application: Cross Derivatives; 4 Block Iteration; Acknowledgements; References; Chapter 6. Block Iterative Methods for Cyclically Reduced Non-Self-AdjointElliptic Problems; 1 Introduction
|
505 |
8 |
|
|a 2 The Reduced System for the Convection-Diffusion Equation3 Bounds for Solving the Convection-Diffusion Equation; 4 Numerical Expe; Acknowledgements; References; Chapter 7. Toward an Effective Two-Parameter SOR Method; 1 Background; 2 Singular Value Decomposition and Orthogonal Similarities; 3 Two-Parameter SOR; 4 A Numerical Example; Acknowledgements; References; Appendix; Chapter 8. Relaxation Parameters for the IQE Iterative Procedure for Solving Semi-Implicit Navier-StokesDifference Equations; 1 Introduction; 2 The Continuous and Discrete Problems; 3 The IQE Iterative Method
|
520 |
|
|
|a Iterative Methods for Large Linear Systems.
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Iterative methods (Mathematics)
|v Congresses.
|
650 |
|
0 |
|a Vector processing (Computer science)
|v Congresses.
|
650 |
|
0 |
|a Parallel processing (Electronic computers)
|v Congresses.
|
650 |
|
6 |
|a It�eration (Math�ematiques)
|0 (CaQQLa)201-0091650
|v Congr�es.
|0 (CaQQLa)201-0378219
|
650 |
|
6 |
|a Traitement vectoriel
|0 (CaQQLa)201-0186314
|v Congr�es.
|0 (CaQQLa)201-0378219
|
650 |
|
6 |
|a Parall�elisme (Informatique)
|0 (CaQQLa)201-0057785
|v Congr�es.
|0 (CaQQLa)201-0378219
|
650 |
|
7 |
|a Iterative methods (Mathematics)
|2 fast
|0 (OCoLC)fst00980827
|
650 |
|
7 |
|a Parallel processing (Electronic computers)
|2 fast
|0 (OCoLC)fst01052928
|
650 |
|
7 |
|a Vector processing (Computer science)
|2 fast
|0 (OCoLC)fst01164669
|
650 |
|
7 |
|a Iteration
|2 gnd
|0 (DE-588)4123457-1
|
650 |
|
7 |
|a Kongress
|2 gnd
|0 (DE-588)4130470-6
|
650 |
|
7 |
|a Lineares System
|2 gnd
|0 (DE-588)4125617-7
|
650 |
|
7 |
|a It�eration (Math�ematiques)
|x Congr�es.
|2 ram
|
650 |
|
7 |
|a Parall�elisme (Informatique)
|x Congr�es.
|2 ram
|
655 |
|
2 |
|a Congress
|0 (DNLM)D016423
|
655 |
|
7 |
|a Conference papers and proceedings.
|2 fast
|0 (OCoLC)fst01423772
|
655 |
|
7 |
|a Conference papers and proceedings.
|2 lcgft
|
655 |
|
7 |
|a Actes de congr�es.
|2 rvmgf
|0 (CaQQLa)RVMGF-000001049
|
655 |
|
7 |
|a Kongress.
|2 swd
|
700 |
1 |
|
|a Kincaid, David
|q (David Ronald)
|
700 |
1 |
|
|a Hayes, Linda J.
|
776 |
0 |
8 |
|i Print version:
|t Iterative methods for large linear systems.
|d Boston : Academic Press, �1990
|w (DLC) 89028453
|w (OCoLC)20593620
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780124074750
|z Texto completo
|