Cargando…

Automorphic forms and geometry of arithmetic varieties /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Hashimoto, K. (Ki-ichiro) (Editor ), Namikawa, Yukihiko, 1945- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Tokyo, Japan : Boston : Kinokuniya ; Academic Press, �1989.
Colección:Advanced studies in pure mathematics (Tokyo, Japan) ; 15.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Automorphic Forms and Geometry of Arithmetic Varieties; Copyright Page; Foreword; Dedication; Preface; Table of Contents; PART I; Secton I: Zeta Functions Associated to Cones and their Special Values; Introduction; 1. Self-dual homogeneous cones; 2. Zeta functions associated to a self-dual homogeneous cone; 3. Geometric invariants of cusp singularities; 4. Zeta functions associated to Tsuchihashi singularities; References; Secton II: Cusps on Hilbert Modular Varieties and Values of L-Functions; 1-; 2.; 3.; 4.; 5.; References.
  • Secton III: On Dimension Formula for Siegel Modular Forms0. Introduction; 1. Dimension formula for �A2(�I) and �A��I) with iV> 3; 2. Dimension formula for �A2(�) and �A3(�A); References; Secton IV: On the Graded Rings of Modular Forms in Several Variables; 1. A graded ring; 2. A graded ring and a subring; 3. Hilbert modular forms; 4. Siegel modular forms of degree two; 5. Siegel modular forms of degree three; 6. Siegel modular forms of degree four; References; Secton V: Vector Valued Modular Forms of Degree Two and their Application to Triple L-functions; 1. Differential operators.
  • 2. Construction of certain vector valued modular forms3. Triple L-functions; References; PART II; Secton VI: Special Values of L-functions Associated with the Space of Quadratic Forms and the Representation of Sp(2#i9 Fp) in the Space of Siegel Cusp Forms; Introduction; Chapter I. L-functions of quadratic forms; 1.1. Definition of zeta functions and L-functions; 1.2. Some properties of �*(, rgw))? �2*C*, ^det)> and L?(.y, �^, �n); Chapter II. Evaluation of special values of L-functions; 2.1. L-functions, and partial zeta functions; 2.2. Integral representations of partial zeta functions I.
  • 2.3. Integral representations of partial zeta functions II2.4. Evaluation of special values of Lf(s, ��C, �n); 2.5. Evaluation of special values of LftP(s, %det),?*(s); Chapter III. Some applications to the representation of Sp(2n, Fp) in the space of Siegel cusp forms; 3.1. The representatinn �i1� of Sp(2n, Fp) in the space of cusp forms; 3.2. On the integrals In(IIr(a); k); 3.3. Traces of �i�e{�a) in the case of degree 4 (n = 2); References; Secton VII: Selberg-Ihara's Zeta function for p-adic Discrete Groups; 0. Introduction; 1. Groups with axiom; 2. Tits system and building.
  • 3. P-adic algebraic groups4 Structure of the discrete subgroups �A; 5. j^-conjugacy classes of given degree; 6. Zeta function Zr(u; p); 7. Remarks; Appendix. Bipartite trees, Hecke algebras, and flowers of groups(by Ki-ichiro Hashimoto); 8. Introduction; 9. Groups with axioms (G, /, I), (G, /, II); 10. Construction of a tree X{qx, q2); 11. Graph of groups over a flower; 12. Tits system and the Hecke algebra; References; Secton VIII: Zeta Functions of Finite Graphs and Representations of p-Adic Groups; 0. Introduction; 1. Graphs and multigraphs; 2. Zeta functions of finite multigraphs.