Cargando…

Automorphic forms and geometry of arithmetic varieties /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Hashimoto, K. (Ki-ichiro) (Editor ), Namikawa, Yukihiko, 1945- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Tokyo, Japan : Boston : Kinokuniya ; Academic Press, �1989.
Colección:Advanced studies in pure mathematics (Tokyo, Japan) ; 15.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn707443620
003 OCoLC
005 20231117044559.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 110315s1989 ja ob 100 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCF  |d OCLCO  |d OPELS  |d OCL  |d COO  |d OCLCQ  |d YDXCP  |d EBLCP  |d N$T  |d E7B  |d DEBSZ  |d MERUC  |d CUS  |d OCLCQ  |d OCLCO  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 898771984  |a 987747918 
020 |a 9780123305800  |q (electronic bk.) 
020 |a 0123305802  |q (electronic bk.) 
020 |a 9781483218076  |q (e-book) 
020 |a 1483218074  |q (e-book) 
020 |z 431410015X 
020 |z 9784314100151 
035 |a (OCoLC)707443620  |z (OCoLC)898771984  |z (OCoLC)987747918 
042 |a dlr 
050 4 |a QA331  |b .A87 1989 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 516.3/5  |2 19 
245 0 0 |a Automorphic forms and geometry of arithmetic varieties /  |c edited by K. Hashimoto and Y. Namikawa. 
260 |a Tokyo, Japan :  |b Kinokuniya ;  |a Boston :  |b Academic Press,  |c �1989. 
300 |a 1 online resource (xiii, 523 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advanced studies in pure mathematics ;  |v 15 
500 |a Based on a series of symposia held in 1985-1986. 
504 |a Includes bibliographical references. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2011.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2011  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |a Front Cover; Automorphic Forms and Geometry of Arithmetic Varieties; Copyright Page; Foreword; Dedication; Preface; Table of Contents; PART I; Secton I: Zeta Functions Associated to Cones and their Special Values; Introduction; 1. Self-dual homogeneous cones; 2. Zeta functions associated to a self-dual homogeneous cone; 3. Geometric invariants of cusp singularities; 4. Zeta functions associated to Tsuchihashi singularities; References; Secton II: Cusps on Hilbert Modular Varieties and Values of L-Functions; 1-; 2.; 3.; 4.; 5.; References. 
505 8 |a Secton III: On Dimension Formula for Siegel Modular Forms0. Introduction; 1. Dimension formula for �A2(�I) and �A��I) with iV> 3; 2. Dimension formula for �A2(�) and �A3(�A); References; Secton IV: On the Graded Rings of Modular Forms in Several Variables; 1. A graded ring; 2. A graded ring and a subring; 3. Hilbert modular forms; 4. Siegel modular forms of degree two; 5. Siegel modular forms of degree three; 6. Siegel modular forms of degree four; References; Secton V: Vector Valued Modular Forms of Degree Two and their Application to Triple L-functions; 1. Differential operators. 
505 8 |a 2. Construction of certain vector valued modular forms3. Triple L-functions; References; PART II; Secton VI: Special Values of L-functions Associated with the Space of Quadratic Forms and the Representation of Sp(2#i9 Fp) in the Space of Siegel Cusp Forms; Introduction; Chapter I. L-functions of quadratic forms; 1.1. Definition of zeta functions and L-functions; 1.2. Some properties of �*(, rgw))? �2*C*, ^det)> and L?(.y, �^, �n); Chapter II. Evaluation of special values of L-functions; 2.1. L-functions, and partial zeta functions; 2.2. Integral representations of partial zeta functions I. 
505 8 |a 2.3. Integral representations of partial zeta functions II2.4. Evaluation of special values of Lf(s, ��C, �n); 2.5. Evaluation of special values of LftP(s, %det),?*(s); Chapter III. Some applications to the representation of Sp(2n, Fp) in the space of Siegel cusp forms; 3.1. The representatinn �i1� of Sp(2n, Fp) in the space of cusp forms; 3.2. On the integrals In(IIr(a); k); 3.3. Traces of �i�e{�a) in the case of degree 4 (n = 2); References; Secton VII: Selberg-Ihara's Zeta function for p-adic Discrete Groups; 0. Introduction; 1. Groups with axiom; 2. Tits system and building. 
505 8 |a 3. P-adic algebraic groups4 Structure of the discrete subgroups �A; 5. j^-conjugacy classes of given degree; 6. Zeta function Zr(u; p); 7. Remarks; Appendix. Bipartite trees, Hecke algebras, and flowers of groups(by Ki-ichiro Hashimoto); 8. Introduction; 9. Groups with axioms (G, /, I), (G, /, II); 10. Construction of a tree X{qx, q2); 11. Graph of groups over a flower; 12. Tits system and the Hecke algebra; References; Secton VIII: Zeta Functions of Finite Graphs and Representations of p-Adic Groups; 0. Introduction; 1. Graphs and multigraphs; 2. Zeta functions of finite multigraphs. 
650 0 |a Automorphic forms  |v Congresses. 
650 6 |a Formes automorphes  |0 (CaQQLa)201-0074986  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Automorphic forms  |2 fast  |0 (OCoLC)fst00824129 
655 2 |a Congress  |0 (DNLM)D016423 
655 7 |a proceedings (reports)  |2 aat  |0 (CStmoGRI)aatgf300027316 
655 7 |a Conference papers and proceedings  |2 fast  |0 (OCoLC)fst01423772 
655 7 |a Conference papers and proceedings.  |2 lcgft 
655 7 |a Actes de congr�es.  |2 rvmgf  |0 (CaQQLa)RVMGF-000001049 
700 1 |a Hashimoto, K.  |q (Ki-ichiro),  |e editor. 
700 1 |a Namikawa, Yukihiko,  |d 1945-  |e editor. 
776 0 8 |i Print version:  |t Automorphic forms and geometry of arithmetic varieties.  |d Tokyo, Japan : Kinokuniya ; Boston : Academic Press, �1989  |w (OCoLC)20681225 
830 0 |a Advanced studies in pure mathematics (Tokyo, Japan) ;  |v 15. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780123305800  |z Texto completo