|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_ocn707443520 |
003 |
OCoLC |
005 |
20231117044559.0 |
006 |
m o d |
007 |
cr bn||||||abp |
007 |
cr bn||||||ada |
008 |
110315s1981 nyua ob 100 0 eng d |
040 |
|
|
|a OCLCE
|b eng
|e pn
|c OCLCE
|d OCLCQ
|d OCLCF
|d OPELS
|d EBLCP
|d N$T
|d E7B
|d DEBSZ
|d OCLCO
|d OCL
|d YDXCP
|d OCL
|d OCLCO
|d OCLCQ
|d OCLCO
|d MERUC
|d OCLCQ
|d VLY
|d OCLCQ
|d OCLCO
|d COM
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 898769125
|a 987750927
|a 1162525646
|
020 |
|
|
|a 9780125087803
|q (electronic bk.)
|
020 |
|
|
|a 0125087802
|q (electronic bk.)
|
020 |
|
|
|a 9781483262499
|
020 |
|
|
|a 1483262499
|
035 |
|
|
|a (OCoLC)707443520
|z (OCoLC)898769125
|z (OCoLC)987750927
|z (OCoLC)1162525646
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA370
|b .N65
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.3/55
|2 19
|
245 |
0 |
0 |
|a Nonlinear differential equations :
|b invariance, stability and bifurcation /
|c edited by Piero de Mottoni, Luigi Salvadori.
|
260 |
|
|
|a New York :
|b Academic Press,
|c 1981.
|
300 |
|
|
|a 1 online resource (xi, 357 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2011.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2011
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Nonlinear Differential Equations: Invariance, Stability, and Bifurcation; Copyright Page; Table of Contents; Contributors; Preface; CHAPTER 1. ABSTRACT NONLINEAR WAVE EQUATIONS: EXISTENCE, LINEAR AND MULTI-LINEAR CASES, APPROXIMATION, STABILITY; 1. INTRODUCTION; 2. EXISTENCE THEORY OF BROWDER -- HEINZ -- von WAHL; 3. ASSUMPTION A IN SIMPLE CASES; 4. FAEDO-GALERKIN APPROXIMATIONS; 5. STABILITY; REFERENCES; CHAPTER 2. STABILITY PROBLEMS OF CHEMICAL NETWORKS; 1. DEFINITIONS AND NOMENCLATURE; 2. THEORY OF HORN, FEINBERG, JACKSON; 3. D-SYMMETRIZABILITY AND KNOT GRAPHS
|
505 |
8 |
|
|a 4. ON THERMODYNAMIC MEANING OF D-SYMMETRIZABILITYCONCLUSIONS; REFERENCES; CHAPTER 3. STABILITY AND GENERALIZED HOPF BIFURCATION THROUGH A REDUCTION PRINCIPLE; 1. INTRODUCTION; 2. RESULTS; 3. OUTLINE OF PROOF OF THEOREM ; REFERENCES; CHAPTER 4. ALMOST PERIODICITY AND ASYMPTOTIC BEHAVIOR FOR THE SOLUTIONS OF A NONLINEAR WAWE EQUATION; 1. INTRODUCTION; 2. ASYMTOTIC BEHAVIOR; REFERENCES; CHAPTER 5. DIFFERENTIABILITY OF THE SOLUTIONS WITH RESPECT TO THE INITIAL CONDITIONS; REFERENCES; CHAPTER 6. SOME REMARKS ON BOUNDEDNESS AND ASYMPTOTIC EQUIVALENCE OF ORDINARY DIFFERENTIAL EQUATIONS; REFERENCES
|
505 |
8 |
|
|a CHAPTER 7. PERIODIC SOLUTIONS FOR A SYSTEM OF NONLINEAR DIFFERENTIAL EQUATIONS MODELLING THE EVOLUTION OF ORO-FAECAL DISEASES1. INTRODUCTION; 2. DEFINITIONS AND BASIC RESULTS; 3. EXISTENCE OF PERIODIC SOLUTIONS; REFERENCES; CHAPTER 8. GENERALIZED HOPF BIFURCATION; INTRODUCTION; 1. PRELIMINARIES; 2. EXISTENCE OF PERIODIC SOLUTION; 3. m+N-ASYMPTOTIC STABILITY. THE METHOD OF MALKIN; 4. ATTRACTIVITY OF THE PERIODIC ORBITS; REFERENCES; CHAPTER 9. BOUNDARY VALUE PROBLEMS FOR NONLINEAR DIFFERENTIAL EQUATIONS ON NON-COMPACT INTERVALS; REFERENCES
|
505 |
8 |
|
|a CHAPTER 10. THE ELECTRIC BALLAST RESISTOR: HOMOGENEOUS AND NONHOMOGENEOUS EQUILIBRIAINTRODUCTION; 1. THE MATHEMATICAL MODEL; 2. THE CASE OF CONSTANT CURRENT: A NONLINEAR SEMIGROUP; 3. THE CASE OF CONSTANT CURRENT: ASYMPTOTIC BEHAVIOR; 4. THE CASE OF CONSTANT CURRENT: STABILITY AND INSTABILITY OF EQUILIBRIA; 5. THE CASE OF CONSTANT VOLTAGE: GLOBAL STABILITY OF A HOMOGENEOUS EQUILIBRIUM; 6. THE CASE OF CONSTANT VOLTAGE: APPEARANCE OF STABLE NONHOMOGENEOUS EQUILIBRIA; REFERENCES; CHAPTER 11. EQUILIBRIA OF AN AGE-DEPENDENT POPULATION MODEL; REFERENCES
|
505 |
8 |
|
|a CHAPTER 12. A VARIATION-OF-CONSTANTS FORMULA FOR NONLINEAR VOLTERRA INTEGRAL EQUATIONS OF CONVOLUTION TYPE1. INTRODUCTION; 2. DEFINITION OF THE SEMIGROUP; 3. THE LINEAR CASE; 4. THE VARIATION-OF-CONSTANTS FORMULA; 5. A SPECIAL EQUATION; 6. CONCLUDING REMARKS; REFERENCES; CHAPTER 13. AN EXAMPLE OF BIFURCATION IN HYDROSTATICS; 1. INTRODUCTION; 2. THE ABSTRACT EQUATION DETERMINING EQUILIBRIA; 3. THE BIFURCATION EQUATION; 4. EXISTENCE OF NON-ZERO EQUILIBRIA; 5. CONCLUSION; REFERENCES
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Differential equations, Nonlinear
|v Congresses.
|
650 |
|
6 |
|a �Equations diff�erentielles non lin�eaires
|0 (CaQQLa)201-0041487
|v Congr�es.
|0 (CaQQLa)201-0378219
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Differential equations, Nonlinear
|2 fast
|0 (OCoLC)fst00893474
|
650 |
|
7 |
|a Equations diff�erentielles nonlin�eaires
|x Congr�es.
|2 ram
|
655 |
|
2 |
|a Congress
|0 (DNLM)D016423
|
655 |
|
7 |
|a proceedings (reports)
|2 aat
|0 (CStmoGRI)aatgf300027316
|
655 |
|
7 |
|a Conference papers and proceedings
|2 fast
|0 (OCoLC)fst01423772
|
655 |
|
7 |
|a Conference papers and proceedings.
|2 lcgft
|
655 |
|
7 |
|a Actes de congr�es.
|2 rvmgf
|0 (CaQQLa)RVMGF-000001049
|
700 |
1 |
|
|a De Mottoni, Piero.
|
700 |
1 |
|
|a Salvadori, Luigi.
|
776 |
0 |
8 |
|i Print version:
|t Nonlinear differential equations.
|d New York : Academic Press, 1981
|w (DLC) 81000543
|w (OCoLC)7249379
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780125087803
|z Texto completo
|