MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn707443520
003 OCoLC
005 20231117044559.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 110315s1981 nyua ob 100 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCF  |d OPELS  |d EBLCP  |d N$T  |d E7B  |d DEBSZ  |d OCLCO  |d OCL  |d YDXCP  |d OCL  |d OCLCO  |d OCLCQ  |d OCLCO  |d MERUC  |d OCLCQ  |d VLY  |d OCLCQ  |d OCLCO  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 898769125  |a 987750927  |a 1162525646 
020 |a 9780125087803  |q (electronic bk.) 
020 |a 0125087802  |q (electronic bk.) 
020 |a 9781483262499 
020 |a 1483262499 
035 |a (OCoLC)707443520  |z (OCoLC)898769125  |z (OCoLC)987750927  |z (OCoLC)1162525646 
042 |a dlr 
050 4 |a QA370  |b .N65 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515.3/55  |2 19 
245 0 0 |a Nonlinear differential equations :  |b invariance, stability and bifurcation /  |c edited by Piero de Mottoni, Luigi Salvadori. 
260 |a New York :  |b Academic Press,  |c 1981. 
300 |a 1 online resource (xi, 357 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2011.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2011  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |a Front Cover; Nonlinear Differential Equations: Invariance, Stability, and Bifurcation; Copyright Page; Table of Contents; Contributors; Preface; CHAPTER 1. ABSTRACT NONLINEAR WAVE EQUATIONS: EXISTENCE, LINEAR AND MULTI-LINEAR CASES, APPROXIMATION, STABILITY; 1. INTRODUCTION; 2. EXISTENCE THEORY OF BROWDER -- HEINZ -- von WAHL; 3. ASSUMPTION A IN SIMPLE CASES; 4. FAEDO-GALERKIN APPROXIMATIONS; 5. STABILITY; REFERENCES; CHAPTER 2. STABILITY PROBLEMS OF CHEMICAL NETWORKS; 1. DEFINITIONS AND NOMENCLATURE; 2. THEORY OF HORN, FEINBERG, JACKSON; 3. D-SYMMETRIZABILITY AND KNOT GRAPHS 
505 8 |a 4. ON THERMODYNAMIC MEANING OF D-SYMMETRIZABILITYCONCLUSIONS; REFERENCES; CHAPTER 3. STABILITY AND GENERALIZED HOPF BIFURCATION THROUGH A REDUCTION PRINCIPLE; 1. INTRODUCTION; 2. RESULTS; 3. OUTLINE OF PROOF OF THEOREM ; REFERENCES; CHAPTER 4. ALMOST PERIODICITY AND ASYMPTOTIC BEHAVIOR FOR THE SOLUTIONS OF A NONLINEAR WAWE EQUATION; 1. INTRODUCTION; 2. ASYMTOTIC BEHAVIOR; REFERENCES; CHAPTER 5. DIFFERENTIABILITY OF THE SOLUTIONS WITH RESPECT TO THE INITIAL CONDITIONS; REFERENCES; CHAPTER 6. SOME REMARKS ON BOUNDEDNESS AND ASYMPTOTIC EQUIVALENCE OF ORDINARY DIFFERENTIAL EQUATIONS; REFERENCES 
505 8 |a CHAPTER 7. PERIODIC SOLUTIONS FOR A SYSTEM OF NONLINEAR DIFFERENTIAL EQUATIONS MODELLING THE EVOLUTION OF ORO-FAECAL DISEASES1. INTRODUCTION; 2. DEFINITIONS AND BASIC RESULTS; 3. EXISTENCE OF PERIODIC SOLUTIONS; REFERENCES; CHAPTER 8. GENERALIZED HOPF BIFURCATION; INTRODUCTION; 1. PRELIMINARIES; 2. EXISTENCE OF PERIODIC SOLUTION; 3. m+N-ASYMPTOTIC STABILITY. THE METHOD OF MALKIN; 4. ATTRACTIVITY OF THE PERIODIC ORBITS; REFERENCES; CHAPTER 9. BOUNDARY VALUE PROBLEMS FOR NONLINEAR DIFFERENTIAL EQUATIONS ON NON-COMPACT INTERVALS; REFERENCES 
505 8 |a CHAPTER 10. THE ELECTRIC BALLAST RESISTOR: HOMOGENEOUS AND NONHOMOGENEOUS EQUILIBRIAINTRODUCTION; 1. THE MATHEMATICAL MODEL; 2. THE CASE OF CONSTANT CURRENT: A NONLINEAR SEMIGROUP; 3. THE CASE OF CONSTANT CURRENT: ASYMPTOTIC BEHAVIOR; 4. THE CASE OF CONSTANT CURRENT: STABILITY AND INSTABILITY OF EQUILIBRIA; 5. THE CASE OF CONSTANT VOLTAGE: GLOBAL STABILITY OF A HOMOGENEOUS EQUILIBRIUM; 6. THE CASE OF CONSTANT VOLTAGE: APPEARANCE OF STABLE NONHOMOGENEOUS EQUILIBRIA; REFERENCES; CHAPTER 11. EQUILIBRIA OF AN AGE-DEPENDENT POPULATION MODEL; REFERENCES 
505 8 |a CHAPTER 12. A VARIATION-OF-CONSTANTS FORMULA FOR NONLINEAR VOLTERRA INTEGRAL EQUATIONS OF CONVOLUTION TYPE1. INTRODUCTION; 2. DEFINITION OF THE SEMIGROUP; 3. THE LINEAR CASE; 4. THE VARIATION-OF-CONSTANTS FORMULA; 5. A SPECIAL EQUATION; 6. CONCLUDING REMARKS; REFERENCES; CHAPTER 13. AN EXAMPLE OF BIFURCATION IN HYDROSTATICS; 1. INTRODUCTION; 2. THE ABSTRACT EQUATION DETERMINING EQUILIBRIA; 3. THE BIFURCATION EQUATION; 4. EXISTENCE OF NON-ZERO EQUILIBRIA; 5. CONCLUSION; REFERENCES 
546 |a English. 
650 0 |a Differential equations, Nonlinear  |v Congresses. 
650 6 |a �Equations diff�erentielles non lin�eaires  |0 (CaQQLa)201-0041487  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Differential equations, Nonlinear  |2 fast  |0 (OCoLC)fst00893474 
650 7 |a Equations diff�erentielles nonlin�eaires  |x Congr�es.  |2 ram 
655 2 |a Congress  |0 (DNLM)D016423 
655 7 |a proceedings (reports)  |2 aat  |0 (CStmoGRI)aatgf300027316 
655 7 |a Conference papers and proceedings  |2 fast  |0 (OCoLC)fst01423772 
655 7 |a Conference papers and proceedings.  |2 lcgft 
655 7 |a Actes de congr�es.  |2 rvmgf  |0 (CaQQLa)RVMGF-000001049 
700 1 |a De Mottoni, Piero. 
700 1 |a Salvadori, Luigi. 
776 0 8 |i Print version:  |t Nonlinear differential equations.  |d New York : Academic Press, 1981  |w (DLC) 81000543  |w (OCoLC)7249379 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780125087803  |z Texto completo