Cargando…

Machine learning : proceedings of the ninth international workshop (ML92) /

Machine Learning Proceedings 1992.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: International Conference on Machine Learning
Otros Autores: Sleeman, D., Edwards, Peter
Formato: Electrónico Congresos, conferencias eBook
Idioma:Inglés
Publicado: San Mateo, Calif. : M. Kaufman, �1992.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn698051652
003 OCoLC
005 20231117044547.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 110123s1992 caua ob 101 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCF  |d OCLCO  |d OPELS  |d YDXCP  |d OCL  |d OCLCO  |d OCLCQ  |d STF  |d OCLCQ  |d UKAHL  |d LUN  |d SFB  |d VT2  |d VLY  |d OCLCQ  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 760290993  |a 974617695  |a 1100922972  |a 1156338196  |a 1175719147 
020 |a 155860247X  |q (electronic bk.) 
020 |a 9781558602472  |q (electronic bk.) 
020 |a 9781483298535  |q (e-book) 
020 |a 1483298531 
035 |a (OCoLC)698051652  |z (OCoLC)760290993  |z (OCoLC)974617695  |z (OCoLC)1100922972  |z (OCoLC)1156338196  |z (OCoLC)1175719147 
042 |a dlr 
050 4 |a Q325.5  |b .M334 1992 
082 0 4 |a 006.3/1  |2 20 
084 |a 54.72  |2 bcl 
245 0 0 |a Machine learning :  |b proceedings of the ninth international workshop (ML92) /  |c edited by Derek Sleeman and Peter Edwards. 
260 |a San Mateo, Calif. :  |b M. Kaufman,  |c �1992. 
300 |a 1 online resource (viii, 488 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and indexes. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2011.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2011  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |a Front Cover; Machine Learning; Copyright Page; Table of Contents; Preface; Program Committee; ML 92 Informal Workshop Themes and Coordinators; Chapter 1. Generalizing from Case Studies: A Case Study; Abstract; 1 PROBLEM AND OBJECTIVES; 2 GENERALIZING CASE STUDIES; 3 AN APPLICATION; 4 LIMITATIONS; 5 CONCLUSION; Acknowledgements; References; Chapter 2. On Learning More Concepts; Abstract; 1 INTRODUCTION; 3 UPPER BOUND ON COVERAGE; 4 THE MULTI-BALLS LEARNING ALGORITHM; 5 THE LARGE-BALL LEARNING ALGORITHM; 6 COVERAGE OF CURRENT LEARNING ALGORITHMS; 7 DISCUSSION; Acknowledgements; References 
505 8 |a Chapter 3. The Principal Axes Method for Constructive InductionAbstract; 1 INTRODUCTION; 2 LEARNING PRINCIPAL AXES; 3 DISTANCE METRIC; 4 GENERATING SIMILARITY MATRIX; 5 DESCRIPTION SPACE TRANSFORMATION; 6 EMPIRICAL EVALUATION; 7 SUMMARY; Acknowledgments; References; Chapter 4. Learning by Incomplete Explanations of Failures in Recursive Domains; Abstract; 1 Introduction; 2 Means-ends analysis search in recursive domains; 3 Problem solving and learning in FS2; 4 Experimental results; 5 Related work; 6 Conclusions and future work; References 
505 8 |a Chapter 5. Eliminating Redundancy in Explanation-Based LearningAbstract; 1 INTRODUCTION; 2 PRELIMINARIES; 3 EXAMPLE-GUIDEDUNFOLDING; 4 EXPERIMENTAL RESULTS; 5 RELATED WORK; 6 CONCLUDING REMARKS; References; Chapter 6. Trading off Consistency and Efficiency in Version-Space Induction; Abstract; 1 INTRODUCTION; 2 LEARNING WITH VARIABLE-FACTORED CONJUNCTIVE CONCEPT LANGUAGES; 3 THE FCE LEARNING ALGORITHM; 4 UTILITY; 5 RELATION TO INDUCTIVE LANGUAGE SHIFT; 6 CONCLUSION; Acknowledgements; References; Chapter 7. Peepholing: choosing attributes efficiently for megainduction; Abstract 
505 8 |a 1 INTRODUCTION AND MOTIVATION2 PEEPHOLING; 3 SHORTLISTING; 4 BLINKERING; 5 EMPIRICAL EVALUATION; 6 CONCLUSIONS; Acknowledgements; References; Chapter 8. Improving Path Planning with Learning; Abstract; 1 INTRODUCTION; 2 ALGORITHM; 3 GENERAL ANALYSIS; 4 SPECIFIC CASE ANALYSIS; 5 COMPUTATIONAL EXPERIENCE; 6 FUTURE WORK; 7 CONCLUSION; Acknowledgements; References; CHAPTER 9. THE RIGHT REPRESENTATION FOR DISCOVERY: FINDING THE CONSERVATION OF MOMENTUM; Abstract; 1 INTRODUCTION; 2 CONSERVATION OF MOMENTUM; 3 CONVENTIONAL MATHEMATICAL APPROACH; 4 THE DIAGRAMMATIC APPROACH; 5 DISCUSSION 
505 8 |a 6 CONCLUSIONSAcknowledgements; References; Chapter 10. Learning to Predict in Uncertain Continuous Tasks; Abstract; 1 Introduction; 2 Assumptions; 3 Manipulation Tasks; 4 Noise and Uncertainty; 5 Generalization; 6 Funnels; 7 Learning Funnels; 8 Experiments; 9 Assumptions Revisited; Acknowledgements; References; Chapter 11. Lazy Partial Evaluation: An Integration of Explanation-Based Generalisation and Partial Evaluation; Abstract; 1 Introduction; 2 Lazy Partial Evaluation; 3 Application to Constraint Satisfaction; 4 Discussion; 5 Conclusion; Acknowledgements and Availability; References 
520 |a Machine Learning Proceedings 1992. 
546 |a English. 
650 0 |a Machine learning  |v Congresses. 
650 6 |a Apprentissage automatique  |0 (CaQQLa)201-0131435  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
650 1 7 |a Machine-learning.  |2 gtt 
650 7 |a Intelligence artificielle  |x Congr�es.  |2 ram 
650 7 |a Apprentissage automatique  |x Congr�es.  |2 ram 
655 2 |a Congress  |0 (DNLM)D016423 
655 7 |a proceedings (reports)  |2 aat  |0 (CStmoGRI)aatgf300027316 
655 7 |a Conference papers and proceedings  |2 fast  |0 (OCoLC)fst01423772 
655 7 |a Conference papers and proceedings.  |2 lcgft 
655 7 |a Actes de congr�es.  |2 rvmgf  |0 (CaQQLa)RVMGF-000001049 
700 1 |a Sleeman, D. 
700 1 |a Edwards, Peter. 
711 2 |a International Conference on Machine Learning  |n (9th :  |d 1992 :  |c Aberdeen, Scotland) 
776 0 8 |i Print version:  |t Machine learning.  |d San Mateo, Calif. : M. Kaufman, �1992  |w (DLC) 92017244  |w (OCoLC)25914741 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781558602472  |z Texto completo