|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_ocn698051652 |
003 |
OCoLC |
005 |
20231117044547.0 |
006 |
m o d |
007 |
cr bn||||||abp |
007 |
cr bn||||||ada |
008 |
110123s1992 caua ob 101 0 eng d |
040 |
|
|
|a OCLCE
|b eng
|e pn
|c OCLCE
|d OCLCQ
|d OCLCF
|d OCLCO
|d OPELS
|d YDXCP
|d OCL
|d OCLCO
|d OCLCQ
|d STF
|d OCLCQ
|d UKAHL
|d LUN
|d SFB
|d VT2
|d VLY
|d OCLCQ
|d COM
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 760290993
|a 974617695
|a 1100922972
|a 1156338196
|a 1175719147
|
020 |
|
|
|a 155860247X
|q (electronic bk.)
|
020 |
|
|
|a 9781558602472
|q (electronic bk.)
|
020 |
|
|
|a 9781483298535
|q (e-book)
|
020 |
|
|
|a 1483298531
|
035 |
|
|
|a (OCoLC)698051652
|z (OCoLC)760290993
|z (OCoLC)974617695
|z (OCoLC)1100922972
|z (OCoLC)1156338196
|z (OCoLC)1175719147
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a Q325.5
|b .M334 1992
|
082 |
0 |
4 |
|a 006.3/1
|2 20
|
084 |
|
|
|a 54.72
|2 bcl
|
245 |
0 |
0 |
|a Machine learning :
|b proceedings of the ninth international workshop (ML92) /
|c edited by Derek Sleeman and Peter Edwards.
|
260 |
|
|
|a San Mateo, Calif. :
|b M. Kaufman,
|c �1992.
|
300 |
|
|
|a 1 online resource (viii, 488 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and indexes.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2011.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2011
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Machine Learning; Copyright Page; Table of Contents; Preface; Program Committee; ML 92 Informal Workshop Themes and Coordinators; Chapter 1. Generalizing from Case Studies: A Case Study; Abstract; 1 PROBLEM AND OBJECTIVES; 2 GENERALIZING CASE STUDIES; 3 AN APPLICATION; 4 LIMITATIONS; 5 CONCLUSION; Acknowledgements; References; Chapter 2. On Learning More Concepts; Abstract; 1 INTRODUCTION; 3 UPPER BOUND ON COVERAGE; 4 THE MULTI-BALLS LEARNING ALGORITHM; 5 THE LARGE-BALL LEARNING ALGORITHM; 6 COVERAGE OF CURRENT LEARNING ALGORITHMS; 7 DISCUSSION; Acknowledgements; References
|
505 |
8 |
|
|a Chapter 3. The Principal Axes Method for Constructive InductionAbstract; 1 INTRODUCTION; 2 LEARNING PRINCIPAL AXES; 3 DISTANCE METRIC; 4 GENERATING SIMILARITY MATRIX; 5 DESCRIPTION SPACE TRANSFORMATION; 6 EMPIRICAL EVALUATION; 7 SUMMARY; Acknowledgments; References; Chapter 4. Learning by Incomplete Explanations of Failures in Recursive Domains; Abstract; 1 Introduction; 2 Means-ends analysis search in recursive domains; 3 Problem solving and learning in FS2; 4 Experimental results; 5 Related work; 6 Conclusions and future work; References
|
505 |
8 |
|
|a Chapter 5. Eliminating Redundancy in Explanation-Based LearningAbstract; 1 INTRODUCTION; 2 PRELIMINARIES; 3 EXAMPLE-GUIDEDUNFOLDING; 4 EXPERIMENTAL RESULTS; 5 RELATED WORK; 6 CONCLUDING REMARKS; References; Chapter 6. Trading off Consistency and Efficiency in Version-Space Induction; Abstract; 1 INTRODUCTION; 2 LEARNING WITH VARIABLE-FACTORED CONJUNCTIVE CONCEPT LANGUAGES; 3 THE FCE LEARNING ALGORITHM; 4 UTILITY; 5 RELATION TO INDUCTIVE LANGUAGE SHIFT; 6 CONCLUSION; Acknowledgements; References; Chapter 7. Peepholing: choosing attributes efficiently for megainduction; Abstract
|
505 |
8 |
|
|a 1 INTRODUCTION AND MOTIVATION2 PEEPHOLING; 3 SHORTLISTING; 4 BLINKERING; 5 EMPIRICAL EVALUATION; 6 CONCLUSIONS; Acknowledgements; References; Chapter 8. Improving Path Planning with Learning; Abstract; 1 INTRODUCTION; 2 ALGORITHM; 3 GENERAL ANALYSIS; 4 SPECIFIC CASE ANALYSIS; 5 COMPUTATIONAL EXPERIENCE; 6 FUTURE WORK; 7 CONCLUSION; Acknowledgements; References; CHAPTER 9. THE RIGHT REPRESENTATION FOR DISCOVERY: FINDING THE CONSERVATION OF MOMENTUM; Abstract; 1 INTRODUCTION; 2 CONSERVATION OF MOMENTUM; 3 CONVENTIONAL MATHEMATICAL APPROACH; 4 THE DIAGRAMMATIC APPROACH; 5 DISCUSSION
|
505 |
8 |
|
|a 6 CONCLUSIONSAcknowledgements; References; Chapter 10. Learning to Predict in Uncertain Continuous Tasks; Abstract; 1 Introduction; 2 Assumptions; 3 Manipulation Tasks; 4 Noise and Uncertainty; 5 Generalization; 6 Funnels; 7 Learning Funnels; 8 Experiments; 9 Assumptions Revisited; Acknowledgements; References; Chapter 11. Lazy Partial Evaluation: An Integration of Explanation-Based Generalisation and Partial Evaluation; Abstract; 1 Introduction; 2 Lazy Partial Evaluation; 3 Application to Constraint Satisfaction; 4 Discussion; 5 Conclusion; Acknowledgements and Availability; References
|
520 |
|
|
|a Machine Learning Proceedings 1992.
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Machine learning
|v Congresses.
|
650 |
|
6 |
|a Apprentissage automatique
|0 (CaQQLa)201-0131435
|v Congr�es.
|0 (CaQQLa)201-0378219
|
650 |
|
7 |
|a Machine learning
|2 fast
|0 (OCoLC)fst01004795
|
650 |
1 |
7 |
|a Machine-learning.
|2 gtt
|
650 |
|
7 |
|a Intelligence artificielle
|x Congr�es.
|2 ram
|
650 |
|
7 |
|a Apprentissage automatique
|x Congr�es.
|2 ram
|
655 |
|
2 |
|a Congress
|0 (DNLM)D016423
|
655 |
|
7 |
|a proceedings (reports)
|2 aat
|0 (CStmoGRI)aatgf300027316
|
655 |
|
7 |
|a Conference papers and proceedings
|2 fast
|0 (OCoLC)fst01423772
|
655 |
|
7 |
|a Conference papers and proceedings.
|2 lcgft
|
655 |
|
7 |
|a Actes de congr�es.
|2 rvmgf
|0 (CaQQLa)RVMGF-000001049
|
700 |
1 |
|
|a Sleeman, D.
|
700 |
1 |
|
|a Edwards, Peter.
|
711 |
2 |
|
|a International Conference on Machine Learning
|n (9th :
|d 1992 :
|c Aberdeen, Scotland)
|
776 |
0 |
8 |
|i Print version:
|t Machine learning.
|d San Mateo, Calif. : M. Kaufman, �1992
|w (DLC) 92017244
|w (OCoLC)25914741
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9781558602472
|z Texto completo
|