|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
SCIDIR_ocn688496656 |
003 |
OCoLC |
005 |
20231117044714.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
101201s2011 maua ob 001 0 eng d |
010 |
|
|
|a 2010023436
|
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d CDX
|d E7B
|d YDXCP
|d EBLCP
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d UMI
|d OCLCQ
|d CUS
|d OCLCQ
|d Z5A
|d OCLCF
|d OPELS
|d UIU
|d OCLCQ
|d CEF
|d OCLCA
|d NLE
|d INT
|d OCLCQ
|d UKMGB
|d OL$
|d UHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|
015 |
|
|
|a GBB6H2206
|2 bnb
|
016 |
7 |
|
|a 017549172
|2 Uk
|
019 |
|
|
|a 778873960
|a 784151754
|a 829080056
|a 1102538407
|a 1113293770
|
020 |
|
|
|a 9780080879338
|q (electronic bk.)
|
020 |
|
|
|a 0080879330
|q (electronic bk.)
|
020 |
|
|
|z 9780123747167
|
020 |
|
|
|z 0123747163
|
035 |
|
|
|a (OCoLC)688496656
|z (OCoLC)778873960
|z (OCoLC)784151754
|z (OCoLC)829080056
|z (OCoLC)1102538407
|z (OCoLC)1113293770
|
050 |
|
4 |
|a TK5102.9
|b .C472 2011eb
|
072 |
|
7 |
|a COM
|x 031000
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 067000
|2 bisacsh
|
082 |
0 |
4 |
|a 621.382/2
|2 22
|
100 |
1 |
|
|a Chaparro, Luis F.,
|e author.
|
245 |
1 |
0 |
|a Signals and systems using MATLAB /
|c Luis F. Chaparro.
|
260 |
|
|
|a Burlington, MA :
|b Academic Press,
|c �2011.
|
300 |
|
|
|a 1 online resource (xvi, 752 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a From the Ground Up; Continuous-time Signals; Continuous-time Systems; The Laplace Transform; Frequency Analysis: The Fourier Series; Frequency Analysis: The Fourier Transform; Application to Control and Communications; Sampling Theory; Discrete-time Signals and Systems; The Z-transform; Fourier Representation of Discrete-time Signals and Systems; Introduction to Discrete Filtering; Applications of Discrete-time Signals and Systems; Appendix A: Useful Formulas.
|
505 |
0 |
|
|a Part 1. Introduction -- Chapter 0. From the Ground Up! -- 0.1. Signals and Systems and Digital Technologies -- 0.2. Examples of Signal Processing Applications -- 0.2.1. Compact-Disc Player -- 0.2.2. Software-Defined Radio and Cognitive Radio -- 0.2.3. Computer-Controlled Systems -- 0.3. Analog or Discrete? -- 0.3.1. Continuous-Time and Discrete-Time Representations -- 0.3.2. Derivatives and Finite Differences -- 0.3.3. Integrals and Summations -- 0.3.4. Differential and Difference Equations -- 0.4. Complex or Real? -- 0.4.1. Complex Numbers and Vectors -- 0.4.2. Functions of a Complex Variable -- 0.4.3. Phasors and Sinusoidal Steady State -- 0.4.4. Phasor Connection -- 0.5. Soft Introduction to MATLAB -- 0.5.1. Numerical Computations -- 0.5.2. Symbolic Computations -- Problems -- Part 2. Theory and Application of Continuous-Time Signals and Systems -- Chapter 1. Continous-Time Signals -- 1.1. Introduction -- 1.2. Classification of Time-Dependent Signals -- 1.3. Continuous-Time Signals -- 1.3.1. Basic Signal Operations---Time Shifting and Reversal -- 1.3.2. Even and Odd Signals -- 1.3.3. Periodic and Aperiodic Signals -- 1.3.4. Finite-Energy and Finite Power Signals -- 1.4. Representation Using Basic Signals -- 1.4.1. Complex Exponentials -- 1.4.2. Unit-Step, Unit-Impulse, and Ramp Signals -- 1.4.3. Special Signals---the Sampling Signal and the Sinc -- 1.4.4. Basic Signals Operations---Time Scaling, Frequency Shifting, and Windowing -- 1.4.5. Generic Representation of Signals -- 1.5. What Have We Accomplished? Where do we Go from Here? -- Problems -- Chapter 2. Continuous-Time Systems -- 2.1. Introduction -- 2.2. System Concept -- 2.2.1. System Classification -- 2.3. LTI Continuous-Time Systems -- 2.3.1. Linearity -- 2.3.2. Time Invariance -- 2.3.3. Representation of Systems by Differential Equations -- 2.3.4. Application of Superposition and Time Invariance -- 2.3.5. Convolution Integral -- 2.3.6. Causality -- 2.3.7. Graphical Computation of Convolution Integral -- 2.3.8. Interconnection of Systems---Block Diagrams -- 2.3.9. Bounded-Input Bounded-Output Stability -- 2.4. What have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 3. The laplace Transform -- 3.1. Introduction -- 3.2. The Two-Sided Laplace Transform -- 3.2.1. Eigenfunctions of LTI Systems -- 3.2.2. Poles and Zeros and Region of Convergence -- 3.3. The One-Sided Laplace Transform -- 3.3.1. Linearity -- 3.3.2. Differentiation -- 3.3.3. Integration -- 3.3.4. Time Shifting -- 3.3.5. Convolution Integral -- 3.4. Inverse Laplace Transform -- 3.4.1. Inverse of One-Sided Laplace Transforms -- 3.4.2. Inverse of Functions Containing e-ps Terms -- 3.4.3. Inverse of Two-Sided Laplace Transforms -- 3.5. Analysis of LTI-Systems -- 3.5.1. LTI Systems Represented by Ordinary Differential Equations -- 3.5.2. Computation of the Convolution Integral -- 3.6. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 4. Frequency Analysis: The Fourier Series -- 4.1. Introduction -- 4.2. Eigenfunctions Revisited -- 4.3. Complex Exponential Fourier Series -- 4.4. Line Spectra -- 4.4.1. Parseval's Theorem---Power Distribution over Frequency -- 4.4.2. Symmetry of Line Spectra -- 4.5. Trigonometric Fourier Series -- 4.6. Fourier Coefficients from Laplace -- 4.7. Convergence of the Fourier Series -- 4.8. Time and Frequency Shifting -- 4.9. Response of LTI Systems to Periodic Signals -- 4.9.1. Sinusoidal Steady State -- 4.9.2. Filtering of Periodic Signals -- 4.10. Other Properties of the Fourier Series -- 4.10.1. Reflection and Even and Odd Periodic Signals -- 4.10.2. Linearity of Fourier Series---Addition of Periodic Signals -- 4.10.3. Multiplicationof Periodic Signals -- 4.10.4. Derivatives and Integrals of Periodic Signals -- 4.11. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 5. Frequency Analysis: The Fourier Transform -- 5.1. Introduction -- 5.2. From the Fourier Series to the Fourier Transform -- 5.3. Existence of the Fourier Transform -- 5.4. Fourier Transforms from the Laplace Transform -- 5.5. Linearity, Inverse Proportionality, and Duality -- 5.5.1. Linearity -- 5.5.2. Inverse Proportionality of Time and Frequency -- 5.5.3. Duality -- 5.6. Spectral Representation -- 5.6.1. Signal Modulation -- 5.6.2. Fourier Transform of Periodic Signals -- 5.6.3. Parseval's Energy Conservation -- 5.6.4. Symmetry of Spectral Representations -- 5.7. Convolution and Filtering -- 5.7.1. Basics of Filtering -- 5.7.2. Ideal Filters -- 5.7.3. Frequency Response from Poles and Zeros -- 5.7.4. Spectrum Analyzer -- 5.8. Additonal Properties -- 5.8.1. Time Shifting -- 5.8.2. Differentiation and Integration -- 5.9. What Have We Accomplished? What Is Next? -- Problems -- Chapter 6. Application to Control and Communications -- 6.1. Introduction -- 6.2. System Connections and Block Diagrams -- 6.3. Application to Classic Control -- 6.3.1. Stability and Stabilization -- 6.3.2. Transient Analysis of First- and Second-Order Control Systems -- 6.4. Application to Communications -- 6.4.1. AM with Suppressed Carrier -- 6.4.2. Commercial AM -- 6.4.3. AM Single Sideband -- 6.4.4. Quadrature AM and Frequency-Division Multiplexing -- 6.4.5. Angle Modulation -- 6.5. Analog Filtering -- 6.5.1. Filtering Basics -- 6.5.2. Butterworth Low-Pass Filter Design -- 6.5.3. Chebyshev Low-Pass Filter Design -- 6.5.4. Frequency Transformations -- 6.5.5. Filter Design with MATLAB -- 6.6. What Have We Accomplished? What Is Next? -- Problems -- Part 3. Theory and Application of Discrete- Time Signals and Systems -- Chapter 7. Sampling Theory -- 7.1. Introduction -- 7.2. Uniform Sampling -- 7.2.1. Pulse Amplitude Modulation -- 7.2.2. Ideal Impulse Sampling -- 7.2.3. Reconstruction of the Original Continuous-Time Signal -- 7.2.4. Signal Reconstruction from Sinc Interpolation -- 7.2.5. Sampling Simulation with MATLAB -- 7.3. The Nyquist-Shannon Sampling Theorem -- 7.3.1. Sampling of Modulated Signals -- 7.4. Practical Aspects of Sampling -- 7.4.1. Sample-and-Hold Sampling -- 7.4.2. Quantization and Conding -- 7.4.3. Sampling, Quantizing, and Coding with MATLAB -- 7.5. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 8. Discrete-Time Signals and Systems -- 8.1. Introduction -- 8.2. Discrete-Time Signals -- 8.2.1. Periodic and Aperiodic Signals -- 8.2.2. Finite-Energy and Finite-Power Discrete-Time Signals -- 8.2.3. Even and Odd Signals -- 8.2.4. Basic Discrete-Time Signals -- 8.3. Discrete-Time Systems -- 8.3.1. Recursive and Nonrecursive Discrete-Time Systems -- 8.3.2. Discrete-Time Systems Represented by Difference Equations -- 8.3.3. The Convolution Sum -- 8.3.4. Linear and Nonlinear Filtering with MATLAB -- 8.3.5. Causality and Stability of Discrete-Time Systems -- 8.4. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 9. The Z-Transform -- 9.1. Introduction -- 9.2. Laplace Transform of Sampled Signals -- 9.3. Two-Sided Z-Transform -- 9.3.1. Region of Convergence -- 9.4. One-Sided Z-Transform -- 9.4.1. Computing the Z-Transform with Symbolic MATLAB -- 9.4.2. Signal Behavior and Poles -- 9.4.3. Convolution Sum and Transfer Function -- 9.4.4. Interconnection of Discrete-Time Systems -- 9.4.5. Initial and Final Value Properties -- 9.5. One-Sided Z-Transform Inverse -- 9.5.1. Long-Division Method -- 9.5.2. Partial Fraction Expansion -- 9.5.3. Inverse Z-Transform with MATLAB -- 9.5.4. Solution of Difference Equations -- 9.5.5. Inverse of Two-Sided Z-Transforms -- 9.6. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 10. Fourier Analysis of Discrete-Time Signals and Systems -- 10.1. Introduction -- 10.2. Discrete-Time Fourier Transform -- 10.2.1. Sampling, Z-Transform, Eigenfunctions, and the DTFT -- 10.2.2. Duality in Time and Frequency -- 10.2.3. Computation of the DTFT Using MATLAB -- 10.2.4. Time and Frequency Supports -- 10.2.5. Parseval's Energy Result -- 10.2.6. Time and Frequency Shifts -- 10.2.7. Symmetry -- 10.2.8. Convolution Sum -- 10.3. Fourier Series of Discrete-Time Periodic Signals -- 10.3.1. Complex Exponential Discrete Fourier Series -- 10.3.2. Connection with the Z-Transform.
|
520 |
|
|
|a This new textbook in Signals and Systems provides a pedagogically-rich approach to what can oftentimes be a mathematically 'dry' subject. Chaparro introduces both continuous and discrete time systems, then covers each separately in depth. Careful explanations of each concept are paired with a large number of step by step worked examples. With features like historical notes, highlighted 'common mistakes, ' and applications in controls, communications, and signal processing, Chaparro helps students appreciate the usefulness of the techniques described in the book. Each chapter contains a section with Matlab applications. * pedagogically rich introduction to signals and systems using historical notes, pointing out 'common mistakes, ' and relating concepts to realistic examples throughout to motivate learning the material *introduces both continuous and discrete systems early, then studies each (separately) in more depth later *extensive set of worked examples and homework assignments, with applications to controls, communications, and signal processing throughout *provides review of all the background math necessary to study the subject *Matlab applications in every chapter.
|
630 |
0 |
0 |
|a MATLAB.
|
650 |
|
0 |
|a Signal processing
|x Digital techniques.
|
650 |
|
0 |
|a System analysis.
|
650 |
|
2 |
|a Systems Analysis
|0 (DNLM)D013597
|
650 |
|
6 |
|a Traitement du signal
|x Techniques num�eriques.
|0 (CaQQLa)201-0087536
|
650 |
|
6 |
|a Analyse de syst�emes.
|0 (CaQQLa)201-0007674
|
650 |
|
7 |
|a systems analysis.
|2 aat
|0 (CStmoGRI)aat300077662
|
650 |
|
7 |
|a COMPUTERS
|x Information Theory.
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Signals & Signal Processing.
|2 bisacsh
|
630 |
0 |
7 |
|a MATLAB.
|2 blmlsh
|
630 |
0 |
7 |
|a MATLAB.
|2 fast
|0 (OCoLC)fst01365096
|
650 |
|
7 |
|a Signal processing
|x Digital techniques.
|2 fast
|0 (OCoLC)fst01118285
|
650 |
|
7 |
|a System analysis.
|2 fast
|0 (OCoLC)fst01141385
|
776 |
0 |
8 |
|i Print version:
|a Chaparro, Luis F.
|t Signals and systems using MATLAB.
|d Burlington, MA : Academic Press, �2011
|z 9780123747167
|w (DLC) 2010023436
|w (OCoLC)233544012
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780123747167
|z Texto completo
|