An introduction to non-Euclidean geometry.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York,
Academic Press
[1973]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- An Introduction to Non-Euclidean Geometry
- Copyright Page
- Table of Contents
- Dedication
- Preface
- PART I: HISTORICAL INTRODUCTION
- Chapter I. Euclid's Fifth Postulate
- 1. Introduction
- 2. Euclid's Stated Assumptions
- 3. The Extent of a Straight Line
- 4. Euclid's Theory of Parallels
- 5. Further Consequences of Postulate 5
- 6. Substitutes for Postulate 5
- Chapter II. Attempts to Prove the Fifth Postulate
- 1. Introduction
- 2. Euclid's Choices
- 3. Posidonius and His Followers
- 4. Ptolemy and Proclus
- 5. Saccheri6. Lambert
- 7. Legendre
- 8. The Discovery of Non-Euclidean Geometry
- PART II: HYPERBOLIC GEOMETRY
- Chapter III. Parallels With a Common Perpendicular
- 1. Introduction
- 2. The Basis E
- 3. The Initial Theorems of Hyperbolic Geometry
- 4. The Hyperbolic Parallel Postulate
- 5. Immediate Consequences of the Postulate
- 6. Further Properties of Quadrilaterals
- 7. Parallels With a Common Perpendicular
- 8. The Angle-Sum of a Triangle
- 9. The Defect of a Triangle
- 10. Quadrilaterals Associated with a Triangle
- 11. The Equivalence of Triangles12. Area of a Triangle
- 13. Implications of the Area Formula
- 14. Circles
- Chapter IV. Parallels Without a Common Perpendicular
- 1. Introduction
- 2. Parallels Without a Common Perpendicular
- 3. Properties of Boundary Parallels
- 4. Trilateral
- 5. Angles of Parallelism
- 6. Distance between Two Lines
- 7. The Uniqueness of Parallels Without a Common Perpendicular
- 8. Perpendicular Bisectors of the Sides of a Triangle
- Chapter V. Horocycles
- 1. Introduction
- 2. Corresponding Points
- 3. Definition of a Horocycle4. Arcs and Chords of a Horocycle
- 5. Codirectional Horocycles
- 6. Arc Length on a Horocycle
- 7. Formulas Related to k-Arcs
- Chapter VI. Triangle Relations
- 1. Introduction
- 2. Associated Right Triangles
- 3. Improved Angle of Parallelism Formulas
- 4. Remarks on the Trigonometric Functions
- 5. Right Triangle Formulas
- 6. Comparison with Euclidean Formulas
- 7. Formulas for the General Triangle
- 8. Hyperbolic Geometry in Small Regions
- 9. Hyperbolic Geometry and the Physical World
- PART III: ELLIPTIC GEOMETRYChapter VII. Double Elliptic Geometry
- 1. Introduction
- 2. Riemann
- 3. The Elliptic Geometries
- 4. Geometry on a Sphere
- 5. A Description of Double Elliptic Geometry
- 6. Double Elliptic Geometry and the Physical World
- 7. An Axiomatic Presentation of Double Elliptic Geometry
- Chapter VIII. Single Elliptic Geometry
- 1. Introduction
- 2. Geometry on a Modified Hemisphere
- 3. A Description of Single Elliptic Geometry
- 4. An Axiomatic Presentation of Single Elliptic Geometry