Cargando…

An introduction to non-Euclidean geometry.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gans, David, 1907-1999
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, Academic Press [1973]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 4500
001 SCIDIR_ocn681917327
003 OCoLC
005 20231117044530.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 101117s1973 nyua ob 001 0 eng d
010 |z  72009326  
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d OPELS  |d N$T  |d COO  |d YDXCP  |d OCLCQ  |d VLY  |d LUN  |d OCLCQ  |d OCLCO  |d S2H  |d OCLCO  |d INARC  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 625742201  |a 1162271659  |a 1302074057  |a 1397689740 
020 |a 9780122748509  |q (electronic bk.) 
020 |a 0122748506  |q (electronic bk.) 
020 |a 9781483295312  |q (electronic bk.) 
020 |a 1483295311  |q (electronic bk.) 
035 |a (OCoLC)681917327  |z (OCoLC)625742201  |z (OCoLC)1162271659  |z (OCoLC)1302074057  |z (OCoLC)1397689740 
042 |a dlr 
050 4 |a QA685  |b .G33 
072 7 |a MAT  |x 012000  |2 bisacsh 
082 0 4 |a 516/.9 
084 |a 31.50  |2 bcl 
084 |a SK 380  |2 rvk 
100 1 |a Gans, David,  |d 1907-1999. 
245 1 3 |a An introduction to non-Euclidean geometry. 
260 |a New York,  |b Academic Press  |c [1973] 
300 |a 1 online resource (xii, 274 pages)  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (page 263). 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |a Front Cover -- An Introduction to Non-Euclidean Geometry -- Copyright Page -- Table of Contents -- Dedication -- Preface -- PART I: HISTORICAL INTRODUCTION -- Chapter I. Euclid's Fifth Postulate -- 1. Introduction -- 2. Euclid's Stated Assumptions -- 3. The Extent of a Straight Line -- 4. Euclid's Theory of Parallels -- 5. Further Consequences of Postulate 5 -- 6. Substitutes for Postulate 5 -- Chapter II. Attempts to Prove the Fifth Postulate -- 1. Introduction -- 2. Euclid's Choices -- 3. Posidonius and His Followers -- 4. Ptolemy and Proclus 
505 8 |a 5. Saccheri6. Lambert -- 7. Legendre -- 8. The Discovery of Non-Euclidean Geometry -- PART II: HYPERBOLIC GEOMETRY -- Chapter III. Parallels With a Common Perpendicular -- 1. Introduction -- 2. The Basis E -- 3. The Initial Theorems of Hyperbolic Geometry -- 4. The Hyperbolic Parallel Postulate -- 5. Immediate Consequences of the Postulate -- 6. Further Properties of Quadrilaterals -- 7. Parallels With a Common Perpendicular -- 8. The Angle-Sum of a Triangle -- 9. The Defect of a Triangle -- 10. Quadrilaterals Associated with a Triangle 
505 8 |a 11. The Equivalence of Triangles12. Area of a Triangle -- 13. Implications of the Area Formula -- 14. Circles -- Chapter IV. Parallels Without a Common Perpendicular -- 1. Introduction -- 2. Parallels Without a Common Perpendicular -- 3. Properties of Boundary Parallels -- 4. Trilateral -- 5. Angles of Parallelism -- 6. Distance between Two Lines -- 7. The Uniqueness of Parallels Without a Common Perpendicular -- 8. Perpendicular Bisectors of the Sides of a Triangle -- Chapter V. Horocycles -- 1. Introduction -- 2. Corresponding Points 
505 8 |a 3. Definition of a Horocycle4. Arcs and Chords of a Horocycle -- 5. Codirectional Horocycles -- 6. Arc Length on a Horocycle -- 7. Formulas Related to k-Arcs -- Chapter VI. Triangle Relations -- 1. Introduction -- 2. Associated Right Triangles -- 3. Improved Angle of Parallelism Formulas -- 4. Remarks on the Trigonometric Functions -- 5. Right Triangle Formulas -- 6. Comparison with Euclidean Formulas -- 7. Formulas for the General Triangle -- 8. Hyperbolic Geometry in Small Regions -- 9. Hyperbolic Geometry and the Physical World 
505 8 |a PART III: ELLIPTIC GEOMETRYChapter VII. Double Elliptic Geometry -- 1. Introduction -- 2. Riemann -- 3. The Elliptic Geometries -- 4. Geometry on a Sphere -- 5. A Description of Double Elliptic Geometry -- 6. Double Elliptic Geometry and the Physical World -- 7. An Axiomatic Presentation of Double Elliptic Geometry -- Chapter VIII. Single Elliptic Geometry -- 1. Introduction -- 2. Geometry on a Modified Hemisphere -- 3. A Description of Single Elliptic Geometry -- 4. An Axiomatic Presentation of Single Elliptic Geometry 
546 |a English. 
650 0 |a Geometry, Non-Euclidean. 
650 6 |a G�eom�etrie non-euclidienne.  |0 (CaQQLa)201-0005575 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Geometry, Non-Euclidean  |2 fast  |0 (OCoLC)fst00940928 
650 7 |a Einf�uhrung  |2 gnd  |0 (DE-588)4151278-9 
650 7 |a Nichteuklidische Geometrie  |2 gnd  |0 (DE-588)4042073-5 
650 1 7 |a Niet-Euclidische meetkunde.  |2 gtt 
776 0 8 |i Print version:  |a Gans, David, 1907-1999.  |t Introduction to non-Euclidean geometry.  |d New York, Academic Press [1973]  |w (DLC) 72009326  |w (OCoLC)590719 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780122748509  |z Texto completo