|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
SCIDIR_ocn681456614 |
003 |
OCoLC |
005 |
20231117044524.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
101115s1991 ne ob 001 0 eng d |
040 |
|
|
|a OCLCE
|b eng
|e pn
|c OCLCE
|d OCLCQ
|d OPELS
|d OCLCQ
|d E7B
|d N$T
|d OCLCF
|d OCLCQ
|d UKDOC
|d UIU
|d YDXCP
|d EBLCP
|d DEBSZ
|d OCLCQ
|d MERUC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCA
|d LEAUB
|d OCLCQ
|d OCLCO
|d OCLCA
|d OCLCQ
|d LUN
|d OCLCQ
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 622240692
|a 855503111
|
020 |
|
|
|a 9780444597373
|q (electronic bk.)
|
020 |
|
|
|a 0444597379
|q (electronic bk.)
|
020 |
|
|
|z 0444889582
|
020 |
|
|
|z 9780444889584
|
035 |
|
|
|a (OCoLC)681456614
|z (OCoLC)622240692
|z (OCoLC)855503111
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA807.5
|
072 |
|
7 |
|a SCI
|x 041000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 096000
|2 bisacsh
|
082 |
0 |
4 |
|a 531
|2 22
|
084 |
|
|
|a PB 694
|2 blsrissc
|
245 |
0 |
0 |
|a Mechanics, analysis and geometry :
|b 200 years after Lagrange /
|c edited by Mauro Francaviglia.
|
260 |
|
|
|a Amsterdam ;
|a New York :
|b North-Holland ;
|a New York, N.Y., U.S.A. :
|b Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.,
|c 1991.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a North-Holland delta series
|
504 |
|
|
|a Includes bibliographical references and index.
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2010
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
520 |
|
|
|a Providing a logically balanced and authoritative account of the different branches and problems of mathematical physics that Lagrange studied and developed, this volume presents up-to-date developments in differential goemetry, dynamical systems, the calculus of variations, and celestial and analytical mechanics.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Mechanics, Analysis and Geometry: 200 Years after Lagrange; Copyright Page; Foreword; Table of Contents; Part I: DYNAMICAL SYSTEMS; Chapter 1. Periodic Solutions near the Lagrange Equilibrium Points in the Restricted Three-Body Problem, for Mass Ratios near; 1. Introduction; 2. A lemma on commuting vector fields; 3. Application to hamiltonian systems; 4. Application to the restricted three-body problem; References; Chapter 2. Lower Bound on the Dimension of the Attractor for the Navier-Stokes Equations in Space Dimension 3; 1. Introduction; 2. The two dimensional case.
|
505 |
8 |
|
|a 3. The three dimensional case4. Comparisons between u p per bounds and lower bounds; 5. Some inequalities (Appendix 1); 6. Upperbound of the dimension of the attractor in the 2D case (Appendix 2); 7. On the Orr-Sommerfeld equation (Appendix 3); References; Chapter 3. Homoclinic Chaos for Ray Optics in a Fiber: 200 Years after Lagrange; 1. Introduction; 2. Axisymmetric, Translation-Invariant Media; 3. Effects of Perturbations of The Refractive Index; Acknowledgements; References; Chapter 4. On the Vortex-Wave System; 1. Introduction; 2. Existence; 3. Many Vortices.
|
505 |
8 |
|
|a 4. Uniqueness, Regularity and Final RemarksReferences; Part II: INTEGRABLE SYSTEMS AND QUANTUM GROUPS; Chapter 5. The Averaging Procedure for the Soliton-Like Solutions of Integrable Systems; 1. The general scheme; 2. The multiphase solutions of Benjamin-Ono equation; 3. Whithem equations; 4. The TLW equation; References; Chapter 6. A New Topological Invariant of Topological Hamiltonian Systems of Differential Equations and Applications to Probl; Definition; Statement 1; Statement 2; Theorem 1; Corollary; Statement 3; Theorem 2; Theorem 3; Statement 4; Proposition; Theorem 4; Theorem 5; Corollary.
|
505 |
8 |
|
|a RemarkTheorem 6; Definition; Corollary; Theorem 7; Statement 5; Remark; Theorem 8; Definition; Theorem 9; Statement 6; References; Chapter 7. On the Lie Algebra of Motion Integrals for Two-Dimensional Hydrodynamic Equations in Clebsh Variables; 1 Two-dimensional in compressible hydrodynamics; 2 Clebsh variables and geometric integrals; 3 On the algebra of geometrical integrals; 4 The compressible hydrodynamics; 5 The integrable example; 6 The generalconstruction; References; Chapter 8. Quasiclassical Limit of Quantum Matrix Groups; 1. Introduction; 2. The Jacobi Identities.
|
505 |
8 |
|
|a 3. Determinant Belongs to the Poisson Centre4. Comultiplication is a Poisson Map; Acknowledgement; References; Part III: ANALYTICAL MECHANICS AND CALCULUS OF VARIATIONS; Chapter 9. A Multisymplectic Framework for Classical Field Theory and the Calculus of Variations: I. Covariant Hamiltonian For; 1. Introduction; 2 Background; 3 Cartan Forms and Lepagean Equivalents; 4 Covariant Hamiltonian Formalism; 5 Regularity; 6 Special Cases; 7 Prospects; Acknowledgements; Appendix; References.
|
650 |
|
0 |
|a Mechanics, Analytic.
|
650 |
|
0 |
|a Mathematical analysis.
|
650 |
|
0 |
|a Geometry.
|
650 |
|
6 |
|a M�ecanique analytique.
|0 (CaQQLa)201-0023814
|
650 |
|
6 |
|a Analyse math�ematique.
|0 (CaQQLa)201-0001156
|
650 |
|
6 |
|a G�eom�etrie.
|0 (CaQQLa)201-0007174
|
650 |
|
7 |
|a geometry.
|2 aat
|0 (CStmoGRI)aat300054529
|
650 |
|
7 |
|a SCIENCE
|x Mechanics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Mechanics
|x Solids.
|2 bisacsh
|
650 |
|
7 |
|a Geometry.
|2 fast
|0 (OCoLC)fst00940864
|
650 |
|
7 |
|a Mathematical analysis.
|2 fast
|0 (OCoLC)fst01012068
|
650 |
|
7 |
|a Mechanics, Analytic.
|2 fast
|0 (OCoLC)fst01013485
|
650 |
|
7 |
|a Theoretische Mechanik
|2 gnd
|0 (DE-588)4185100-6
|
650 |
|
7 |
|a Aufsatzsammlung
|2 gnd
|0 (DE-588)4143413-4
|
650 |
|
7 |
|a Mathematische Physik
|2 gnd
|0 (DE-588)4037952-8
|
650 |
|
7 |
|a Rezeption
|2 gnd
|0 (DE-588)4049716-1
|
650 |
|
7 |
|a Lagrange-Mannigfaltigkeit
|2 gnd
|0 (DE-588)4212799-3
|
650 |
|
7 |
|a Mathematik
|2 gnd
|0 (DE-588)4037944-9
|
650 |
|
7 |
|a M�ecanique analytique.
|2 ram
|
650 |
|
7 |
|a Analyse math�ematique.
|2 ram
|
650 |
|
7 |
|a G�eom�etrie.
|2 ram
|
600 |
1 |
7 |
|a Lagrange, Joseph Louis de.
|2 swd
|
653 |
|
|
|a Mechanics
|
700 |
1 |
|
|a Francaviglia, M.
|
776 |
0 |
8 |
|i Print version:
|t Mechanics, analysis and geometry.
|d Amsterdam ; New York : North-Holland ; New York, N.Y., U.S.A. : Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., 1991
|z 9780444889584
|w (DLC) 90026313
|w (OCoLC)22906518
|
830 |
|
0 |
|a North-Holland delta series.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780444889584
|z Texto completo
|