Cargando…

Mechanics, analysis and geometry : 200 years after Lagrange /

Providing a logically balanced and authoritative account of the different branches and problems of mathematical physics that Lagrange studied and developed, this volume presents up-to-date developments in differential goemetry, dynamical systems, the calculus of variations, and celestial and analyti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Francaviglia, M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; New York : New York, N.Y., U.S.A. : North-Holland ; Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., 1991.
Colección:North-Holland delta series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 SCIDIR_ocn681456614
003 OCoLC
005 20231117044524.0
006 m o d
007 cr cnu---unuuu
008 101115s1991 ne ob 001 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OPELS  |d OCLCQ  |d E7B  |d N$T  |d OCLCF  |d OCLCQ  |d UKDOC  |d UIU  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCQ  |d MERUC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCA  |d LEAUB  |d OCLCQ  |d OCLCO  |d OCLCA  |d OCLCQ  |d LUN  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 622240692  |a 855503111 
020 |a 9780444597373  |q (electronic bk.) 
020 |a 0444597379  |q (electronic bk.) 
020 |z 0444889582 
020 |z 9780444889584 
035 |a (OCoLC)681456614  |z (OCoLC)622240692  |z (OCoLC)855503111 
042 |a dlr 
050 4 |a QA807.5 
072 7 |a SCI  |x 041000  |2 bisacsh 
072 7 |a SCI  |x 096000  |2 bisacsh 
082 0 4 |a 531  |2 22 
084 |a PB 694  |2 blsrissc 
245 0 0 |a Mechanics, analysis and geometry :  |b 200 years after Lagrange /  |c edited by Mauro Francaviglia. 
260 |a Amsterdam ;  |a New York :  |b North-Holland ;  |a New York, N.Y., U.S.A. :  |b Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.,  |c 1991. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a North-Holland delta series 
504 |a Includes bibliographical references and index. 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
520 |a Providing a logically balanced and authoritative account of the different branches and problems of mathematical physics that Lagrange studied and developed, this volume presents up-to-date developments in differential goemetry, dynamical systems, the calculus of variations, and celestial and analytical mechanics. 
588 0 |a Print version record. 
505 0 |a Front Cover; Mechanics, Analysis and Geometry: 200 Years after Lagrange; Copyright Page; Foreword; Table of Contents; Part I: DYNAMICAL SYSTEMS; Chapter 1. Periodic Solutions near the Lagrange Equilibrium Points in the Restricted Three-Body Problem, for Mass Ratios near; 1. Introduction; 2. A lemma on commuting vector fields; 3. Application to hamiltonian systems; 4. Application to the restricted three-body problem; References; Chapter 2. Lower Bound on the Dimension of the Attractor for the Navier-Stokes Equations in Space Dimension 3; 1. Introduction; 2. The two dimensional case. 
505 8 |a 3. The three dimensional case4. Comparisons between u p per bounds and lower bounds; 5. Some inequalities (Appendix 1); 6. Upperbound of the dimension of the attractor in the 2D case (Appendix 2); 7. On the Orr-Sommerfeld equation (Appendix 3); References; Chapter 3. Homoclinic Chaos for Ray Optics in a Fiber: 200 Years after Lagrange; 1. Introduction; 2. Axisymmetric, Translation-Invariant Media; 3. Effects of Perturbations of The Refractive Index; Acknowledgements; References; Chapter 4. On the Vortex-Wave System; 1. Introduction; 2. Existence; 3. Many Vortices. 
505 8 |a 4. Uniqueness, Regularity and Final RemarksReferences; Part II: INTEGRABLE SYSTEMS AND QUANTUM GROUPS; Chapter 5. The Averaging Procedure for the Soliton-Like Solutions of Integrable Systems; 1. The general scheme; 2. The multiphase solutions of Benjamin-Ono equation; 3. Whithem equations; 4. The TLW equation; References; Chapter 6. A New Topological Invariant of Topological Hamiltonian Systems of Differential Equations and Applications to Probl; Definition; Statement 1; Statement 2; Theorem 1; Corollary; Statement 3; Theorem 2; Theorem 3; Statement 4; Proposition; Theorem 4; Theorem 5; Corollary. 
505 8 |a RemarkTheorem 6; Definition; Corollary; Theorem 7; Statement 5; Remark; Theorem 8; Definition; Theorem 9; Statement 6; References; Chapter 7. On the Lie Algebra of Motion Integrals for Two-Dimensional Hydrodynamic Equations in Clebsh Variables; 1 Two-dimensional in compressible hydrodynamics; 2 Clebsh variables and geometric integrals; 3 On the algebra of geometrical integrals; 4 The compressible hydrodynamics; 5 The integrable example; 6 The generalconstruction; References; Chapter 8. Quasiclassical Limit of Quantum Matrix Groups; 1. Introduction; 2. The Jacobi Identities. 
505 8 |a 3. Determinant Belongs to the Poisson Centre4. Comultiplication is a Poisson Map; Acknowledgement; References; Part III: ANALYTICAL MECHANICS AND CALCULUS OF VARIATIONS; Chapter 9. A Multisymplectic Framework for Classical Field Theory and the Calculus of Variations: I. Covariant Hamiltonian For; 1. Introduction; 2 Background; 3 Cartan Forms and Lepagean Equivalents; 4 Covariant Hamiltonian Formalism; 5 Regularity; 6 Special Cases; 7 Prospects; Acknowledgements; Appendix; References. 
650 0 |a Mechanics, Analytic. 
650 0 |a Mathematical analysis. 
650 0 |a Geometry. 
650 6 |a M�ecanique analytique.  |0 (CaQQLa)201-0023814 
650 6 |a Analyse math�ematique.  |0 (CaQQLa)201-0001156 
650 6 |a G�eom�etrie.  |0 (CaQQLa)201-0007174 
650 7 |a geometry.  |2 aat  |0 (CStmoGRI)aat300054529 
650 7 |a SCIENCE  |x Mechanics  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Mechanics  |x Solids.  |2 bisacsh 
650 7 |a Geometry.  |2 fast  |0 (OCoLC)fst00940864 
650 7 |a Mathematical analysis.  |2 fast  |0 (OCoLC)fst01012068 
650 7 |a Mechanics, Analytic.  |2 fast  |0 (OCoLC)fst01013485 
650 7 |a Theoretische Mechanik  |2 gnd  |0 (DE-588)4185100-6 
650 7 |a Aufsatzsammlung  |2 gnd  |0 (DE-588)4143413-4 
650 7 |a Mathematische Physik  |2 gnd  |0 (DE-588)4037952-8 
650 7 |a Rezeption  |2 gnd  |0 (DE-588)4049716-1 
650 7 |a Lagrange-Mannigfaltigkeit  |2 gnd  |0 (DE-588)4212799-3 
650 7 |a Mathematik  |2 gnd  |0 (DE-588)4037944-9 
650 7 |a M�ecanique analytique.  |2 ram 
650 7 |a Analyse math�ematique.  |2 ram 
650 7 |a G�eom�etrie.  |2 ram 
600 1 7 |a Lagrange, Joseph Louis de.  |2 swd 
653 |a Mechanics 
700 1 |a Francaviglia, M. 
776 0 8 |i Print version:  |t Mechanics, analysis and geometry.  |d Amsterdam ; New York : North-Holland ; New York, N.Y., U.S.A. : Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., 1991  |z 9780444889584  |w (DLC) 90026313  |w (OCoLC)22906518 
830 0 |a North-Holland delta series. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444889584  |z Texto completo