Cargando…

Algorithmic graph theory and perfect graphs /

Algorithmic Graph Theory and Perfect Graphs.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Golumbic, Martin Charles
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Academic Press, 1980.
Colección:Computer science and applied mathematics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Algorithmic Graph Theory and Perfect Graphs; Copyright Page; Dedication; Table of Contents; Foreword; Preface; Acknowledgments; List of Symbols; Chapter 1. Graph Theoretic Foundations ; 1. Basic Definitions and Notations; 2. Intersection Graphs; 3. Interval Graphs-A Sneak Preview of the Notions Coming Up; 4. Summary; Exercises; Bibliography; Chapter 2. The Design of Efficient Algorithms; 1. The Complexity of Computer Algorithms; 2. Data Structures; 3. How to Explore a Graph; 4. Transitive Tournaments and Topological Sorting; Exercises; Bibliography; Chapter 3. Perfect Graphs
  • 1. The Star of the Show2. The Perfect Graph Theorem; 3. p-Critical and Partitionable Graphs; 4. A Polyhedral Characterization of Perfect Graphs; 5. A Polyhedral Characterization of p-Critical Graphs; 6. The Strong Perfect Graph Conjecture; Exercises; Bibliography; Chapter 4. Triangulated Graphs; 1. Introduction; 2. Characterizing Triangulated Graphs; 3. Recognizing Triangulated Graphs by Lexicographic Breadth-First Search; 4. The Complexity of Recognizing Triangulated Graphs; 5. Triangulated Graphs as Intersection Graphs; 6. Triangulated Graphs Are Perfect
  • 1. An Introduction to Chapters 6-8: Interval, Permutation, and Split Graphs2. Characterizing Split Graphs; 3. Degree Sequences and Split Graphs; Exercises; Bibliography; Chapter 7. Permutation Graphs; 1. Introduction; 2. Characterizing Permutation Graphs; 3. Permutation Labelings; 4. Applications; 5. Sorting a Permutation Using Queues in Parallel; Exercises; Bibliography; Chapter 8. Interval Graphs; 1. How It All Started; 2. Some Characterizations of Interval Graphs; 3. The Complexity of Consecutive 1's Testing; 4. Applications of Interval Graphs; 5. Preference and Indifference
  • 6. Circular-Arc GraphsExercises; Bibliography; Chapter 9. Superperfect Graphs; 1. Coloring Weighted Graphs; 2. Superperfection; 3. An Infinite Class of Superperfect Noncomparability Graphs; 4. When Does Superperfect Equal Comparability?; 5. Composition of Superperfect Graphs; 6. A Representation Using the Consecutive 1's Property; Exercises; Bibliography; Chapter 10. Threshold Graphs; 1. The Threshold Dimension; 2. Degree Partition of Threshold Graphs; 3. A Characterization Using Permutations; 4. An Application to Synchronizing Parallel Processes; Exercises; Bibliography