Cargando…

Algorithmic graph theory and perfect graphs /

Algorithmic Graph Theory and Perfect Graphs.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Golumbic, Martin Charles
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Academic Press, 1980.
Colección:Computer science and applied mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn681443524
003 OCoLC
005 20231117044523.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 101115s1980 nyua ob 001 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCF  |d OCLCO  |d OPELS  |d N$T  |d E7B  |d YDXCP  |d COO  |d OCLCQ  |d OCLCO  |d OCLCA  |d LUN  |d OCLCQ  |d UKAHL  |d VLY  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO 
019 |a 625026895  |a 900886873  |a 1100971973 
020 |a 9780122892608  |q (electronic bk.) 
020 |a 0122892607  |q (electronic bk.) 
020 |a 9781483271972  |q (electronic bk.) 
020 |a 1483271978  |q (electronic bk.) 
035 |a (OCoLC)681443524  |z (OCoLC)625026895  |z (OCoLC)900886873  |z (OCoLC)1100971973 
042 |a dlr 
050 4 |a QA166  |b .G64 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511/.5  |2 19 
084 |a 31.12  |2 bcl 
084 |a 54.73  |2 bcl 
100 1 |a Golumbic, Martin Charles. 
245 1 0 |a Algorithmic graph theory and perfect graphs /  |c Martin Charles Golumbic. 
260 |a New York :  |b Academic Press,  |c 1980. 
300 |a 1 online resource (xx, 284 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Computer science and applied mathematics 
504 |a Includes bibliographical references and index. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |a Front Cover; Algorithmic Graph Theory and Perfect Graphs; Copyright Page; Dedication; Table of Contents; Foreword; Preface; Acknowledgments; List of Symbols; Chapter 1. Graph Theoretic Foundations ; 1. Basic Definitions and Notations; 2. Intersection Graphs; 3. Interval Graphs-A Sneak Preview of the Notions Coming Up; 4. Summary; Exercises; Bibliography; Chapter 2. The Design of Efficient Algorithms; 1. The Complexity of Computer Algorithms; 2. Data Structures; 3. How to Explore a Graph; 4. Transitive Tournaments and Topological Sorting; Exercises; Bibliography; Chapter 3. Perfect Graphs 
505 8 |a 1. The Star of the Show2. The Perfect Graph Theorem; 3. p-Critical and Partitionable Graphs; 4. A Polyhedral Characterization of Perfect Graphs; 5. A Polyhedral Characterization of p-Critical Graphs; 6. The Strong Perfect Graph Conjecture; Exercises; Bibliography; Chapter 4. Triangulated Graphs; 1. Introduction; 2. Characterizing Triangulated Graphs; 3. Recognizing Triangulated Graphs by Lexicographic Breadth-First Search; 4. The Complexity of Recognizing Triangulated Graphs; 5. Triangulated Graphs as Intersection Graphs; 6. Triangulated Graphs Are Perfect 
505 8 |a 1. An Introduction to Chapters 6-8: Interval, Permutation, and Split Graphs2. Characterizing Split Graphs; 3. Degree Sequences and Split Graphs; Exercises; Bibliography; Chapter 7. Permutation Graphs; 1. Introduction; 2. Characterizing Permutation Graphs; 3. Permutation Labelings; 4. Applications; 5. Sorting a Permutation Using Queues in Parallel; Exercises; Bibliography; Chapter 8. Interval Graphs; 1. How It All Started; 2. Some Characterizations of Interval Graphs; 3. The Complexity of Consecutive 1's Testing; 4. Applications of Interval Graphs; 5. Preference and Indifference 
505 8 |a 6. Circular-Arc GraphsExercises; Bibliography; Chapter 9. Superperfect Graphs; 1. Coloring Weighted Graphs; 2. Superperfection; 3. An Infinite Class of Superperfect Noncomparability Graphs; 4. When Does Superperfect Equal Comparability?; 5. Composition of Superperfect Graphs; 6. A Representation Using the Consecutive 1's Property; Exercises; Bibliography; Chapter 10. Threshold Graphs; 1. The Threshold Dimension; 2. Degree Partition of Threshold Graphs; 3. A Characterization Using Permutations; 4. An Application to Synchronizing Parallel Processes; Exercises; Bibliography 
520 |a Algorithmic Graph Theory and Perfect Graphs. 
650 0 |a Perfect graphs. 
650 0 |a Graph theory. 
650 6 |a Th�eorie des graphes.  |0 (CaQQLa)201-0024153 
650 6 |a Graphes parfaits.  |0 (CaQQLa)201-0385426 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Graph theory  |2 fast  |0 (OCoLC)fst00946584 
650 7 |a Perfect graphs  |2 fast  |0 (OCoLC)fst01057796 
650 7 |a Graph  |2 gnd  |0 (DE-588)4021842-9 
650 1 7 |a Grafentheorie.  |2 gtt 
650 7 |a Graphes parfaits.  |2 ram 
776 0 8 |i Print version:  |a Golumbic, Martin Charles.  |t Algorithmic graph theory and perfect graphs.  |d New York : Academic Press, 1980  |w (DLC) 79022956  |w (OCoLC)5564855 
830 0 |a Computer science and applied mathematics. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780122892608  |z Texto completo