Cargando…

Some topics in complex analysis

Some Topics in Complex Analysis.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Phillips, E. G. (Edgar Giraldus)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford, New York, Pergamon Press [1966]
Edición:[1st ed.].
Colección:International series of monographs in pure and applied mathematics ; v. 86.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 2.1 The Periods of an Integral2.2 The Function sn u; 2.3 The Constants K and K; 2.4 The Functions cn u, dn u; 2.5 The Addition Theorems; 2.6 Periodicity; 2.7 Expansions in Powers of u; 2.8 Identities and Duplication Formulae; 2.9 Jacobi's ""Imaginary"" Transformation; 2.10 The Jacobian Functions for Values Connected with the Periods; 2.11 Applications of the Method of Comparison to Jacobian Functions; 2.12 The Relation Between Weierstrassian and Jacobian E.F.; 2.13 Elliptic Integrals; 2.14 The Functions E(u) and Z(u); Examples 2; CHAPTER 3. CONFORMAL TRANSFORMATION
  • 3.1 Ratio of Two Quadratics3.2 Generalized Joukowski Transformations; 3.3 Boundary a Closed Polygon; 3.4 Schwarz-Christoffel Transformation; 3.5 Transformations Involving Elliptic Functions; 3.6 Note on Transformations Involving E.F.; 3.7 Schwarz's Lemma; 3.8 Extension of Schwarz's Lemma; 3.9 An Estimate of the Derivative of a Bounded Function; 3.10 Functions with a Positive Real Part; 3.11 Schwarz's Symmetry Principle; 3.12; Examples 3; CHAPTER 4. SCHLICHT FUNCTIONS; 4.1; 4.2 Definition; 4.3 Some Distortion Theorems; 4.4; 4.5 Koebe's Distortion Theorems; 4.6 Bieberbach's Inequality
  • Examples 4CHAPTER 5. THE MAXIMUM-MODULUS PRINCIPLE; 5.1 The Maximum-Modulus Theorem; 5.2 The Phragm�en-Lindel�of Extension; 5.3 Deductions from the Maximum-Modulus Principle; 5.4; 5.5; 5.6; Examples 5; CHAPTER 6. INTEGRAL FUNCTIONS; 6.1 Definition and Preliminaries; 6.2 Weierstrass's Primary Factors; 6.3 The Order of an I.F.; 6.4 Jensen's Theorem; 6.5 The Function n(r) for an I.F.; 6.6 Canonical Products and Genus of an I.F.; 6.7 Hadamard's Theorem on I.F. of Finite Order; 6.8 The Coefficients in the Expansion of an I.F. of Finite Order; Examples 6; CHAPTER 7. EXPANSIONS IN INFINITE SERIES