Cargando…

Introduction to modern mathematics

Introduction to Modern Mathematics.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rasiowa, Helena
Formato: Electrónico eBook
Idioma:Inglés
Polaco
Publicado: Amsterdam, North-Holland Pub. Co., 1973.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 4500
001 SCIDIR_ocn681089840
003 OCoLC
005 20231117044512.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 101111s1973 ne o 001 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCF  |d OCLCO  |d OPELS  |d N$T  |d E7B  |d DEBSZ  |d OCLCQ  |d MERUC  |d OCLCQ  |d UKAHL  |d VLY  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 622179265  |a 1100870180 
020 |a 9780720420678  |q (electronic bk.) 
020 |a 0720420679  |q (electronic bk.) 
020 |a 9781483274720  |q (electronic bk.) 
020 |a 1483274721  |q (electronic bk.) 
035 |a (OCoLC)681089840  |z (OCoLC)622179265  |z (OCoLC)1100870180 
041 1 |a eng  |h pol 
042 |a dlr 
050 4 |a QA37.2  |b .R3713 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511/.3  |2 18 
082 0 4 |a 510 
100 1 |a Rasiowa, Helena. 
240 1 0 |a Wst�ep do matematyki wsp�o�c�zesnej.  |l English 
245 1 0 |a Introduction to modern mathematics  |c [Translated by Olgierd Wojtasiewicz]. 
260 |a Amsterdam,  |b North-Holland Pub. Co.,  |c 1973. 
300 |a 1 online resource (xii, 339 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |a Front Cover; Introduction to Modern Mathematics; Copyright Page; FOREWORD; Table of Contents; CHAPTER I. THE ALGEBRA OF SETS; 1. The concept of set; 2. The union of sets; 3. The intersection of sets. The laws of absorption and distributivity; 4. The difference of sets. Relationships between the difference of sets and the operations of union and intersection of sets; 5. The universe. The complement of a set; 6. Axioms of the algebra of sets; 7. Fields of sets; 8. Prepositional functions of one variable; 9. Note on axioms of set theory 
505 8 |a 10. Comments on the need of an axiomatic approach to set theory and on axiomatic theoriesCHAPTER II: NATURAL NUMBERS. PROOFS BY INDUCTION; 1. An axiomatic approach to natural numbers. The principle of induction; 2. Examples of proofs by induction; CHAPTER III. FUNCTIONS; 1. The concept of function; 2. One-to-one functions. Inverse function; 3. Composition of functions; 4. Groups of transformations; CHAPTER IV. GENERALIZED UNIONS AND INTERSECTIONS OF SETS; 1. The concept of generalized union and intersection; 2. The properties of generalized unions and intersections of sets 
505 8 |a CHAPTER V. CARTESIAN PRODUCTS OF SETS. RELATIONS. FUNCTIONS AS RELATIONS1. Cartesian products; 2. Binary relations; 3. Propositional functions of two variables; 4. Reflexive, irreflexive, symmetric, asymmetric, antisymmetric, and transitive relations; 5. Functions as relations; CHAPTER VI. GENERALIZED PRODUCTS. m-ARY RELATIONS. FUNCTIONS OF SEVERAL VARIABLES. IMAGES AND INVERSE IMAGES UNDER A FUNCTION; 1. Generalized products; 2. m-ary relations; 3. Propositional functions of m variables; 4. Functions of several variables; 5. Images and inverse images under a function 
505 8 |a CHAPTER VII. EQUIVALENCE RELATIONS1. Definition of equivalence relations. Method of identification; 2. Application of the method of identification to the construction of integers; 3. Application of the method of identification to the construction of rational numbers; 4. Note on Cantor's theory of real numbers; CHAPTER VIII. POWERS OF SETS; 1. Equipotent sets. Power of a set; 2. Enumerable sets; 3. Examples of non-enumerable sets; 4. Inequalities for cardinal numbers. The Cantor-Bernstein theorem; 5. Sets of the power of the continuum 
505 8 |a 6. The power set. Cantor's theorem. Consequences of Cantor's theoremCHAPTER IX. ORDERED SETS; 1. Ordering relations; 2. Maximal and minimal elements; 3 Subsets of ordered sets. The Kuratowski-Zorn lemma; 4. Note on lattices; 5. Quasi-ordering relations; 6. Note on directed sets; CHAPTER X. LINEARLY ORDERED SETS; 1. Linear orderings; 2. Isomorphism of linearly ordered sets; 3. Dense linear ordering; 4. Continuous linear orderings; CHAPTER XI. WELL-ORDERED SETS; 1. Well-ordering relations. Ordinal numbers; 2. Comparison of ordinal numbers; 3. Sets of ordinal numbers 
520 |a Introduction to Modern Mathematics. 
650 0 |a Mathematics. 
650 2 |a Mathematics  |0 (DNLM)D008433 
650 6 |a Math�ematiques.  |0 (CaQQLa)201-0068291 
650 7 |a mathematics.  |2 aat  |0 (CStmoGRI)aat300054522 
650 7 |a applied mathematics.  |2 aat  |0 (CStmoGRI)aat300054524 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Mathematics  |2 fast  |0 (OCoLC)fst01012163 
650 1 7 |a Wiskunde.  |2 gtt 
650 1 7 |a Wiskundige logica.  |2 gtt 
776 0 8 |i Print version:  |a Rasiowa, Helena.  |s Wst�ep do matematyki wsp�o�c�zesnej. English.  |t Introduction to modern mathematics.  |d Amsterdam, North-Holland Pub. Co., 1973  |w (DLC) 72088575  |w (OCoLC)713964 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780720420678  |z Texto completo