Introduction to modern mathematics
Introduction to Modern Mathematics.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés Polaco |
Publicado: |
Amsterdam,
North-Holland Pub. Co.,
1973.
|
Temas: | |
Acceso en línea: | Texto completo |
MARC
LEADER | 00000cam a2200000 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn681089840 | ||
003 | OCoLC | ||
005 | 20231117044512.0 | ||
006 | m o d | ||
007 | cr bn||||||abp | ||
007 | cr bn||||||ada | ||
008 | 101111s1973 ne o 001 0 eng d | ||
040 | |a OCLCE |b eng |e pn |c OCLCE |d OCLCQ |d OCLCF |d OCLCO |d OPELS |d N$T |d E7B |d DEBSZ |d OCLCQ |d MERUC |d OCLCQ |d UKAHL |d VLY |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 622179265 |a 1100870180 | ||
020 | |a 9780720420678 |q (electronic bk.) | ||
020 | |a 0720420679 |q (electronic bk.) | ||
020 | |a 9781483274720 |q (electronic bk.) | ||
020 | |a 1483274721 |q (electronic bk.) | ||
035 | |a (OCoLC)681089840 |z (OCoLC)622179265 |z (OCoLC)1100870180 | ||
041 | 1 | |a eng |h pol | |
042 | |a dlr | ||
050 | 4 | |a QA37.2 |b .R3713 | |
072 | 7 | |a MAT |x 000000 |2 bisacsh | |
082 | 0 | 4 | |a 511/.3 |2 18 |
082 | 0 | 4 | |a 510 |
100 | 1 | |a Rasiowa, Helena. | |
240 | 1 | 0 | |a Wst�ep do matematyki wsp�o�c�zesnej. |l English |
245 | 1 | 0 | |a Introduction to modern mathematics |c [Translated by Olgierd Wojtasiewicz]. |
260 | |a Amsterdam, |b North-Holland Pub. Co., |c 1973. | ||
300 | |a 1 online resource (xii, 339 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | |3 Use copy |f Restrictions unspecified |2 star |5 MiAaHDL | ||
533 | |a Electronic reproduction. |b [Place of publication not identified] : |c HathiTrust Digital Library, |d 2010. |5 MiAaHDL | ||
538 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |u http://purl.oclc.org/DLF/benchrepro0212 |5 MiAaHDL | ||
583 | 1 | |a digitized |c 2010 |h HathiTrust Digital Library |l committed to preserve |2 pda |5 MiAaHDL | |
588 | 0 | |a Print version record. | |
505 | 0 | |a Front Cover; Introduction to Modern Mathematics; Copyright Page; FOREWORD; Table of Contents; CHAPTER I. THE ALGEBRA OF SETS; 1. The concept of set; 2. The union of sets; 3. The intersection of sets. The laws of absorption and distributivity; 4. The difference of sets. Relationships between the difference of sets and the operations of union and intersection of sets; 5. The universe. The complement of a set; 6. Axioms of the algebra of sets; 7. Fields of sets; 8. Prepositional functions of one variable; 9. Note on axioms of set theory | |
505 | 8 | |a 10. Comments on the need of an axiomatic approach to set theory and on axiomatic theoriesCHAPTER II: NATURAL NUMBERS. PROOFS BY INDUCTION; 1. An axiomatic approach to natural numbers. The principle of induction; 2. Examples of proofs by induction; CHAPTER III. FUNCTIONS; 1. The concept of function; 2. One-to-one functions. Inverse function; 3. Composition of functions; 4. Groups of transformations; CHAPTER IV. GENERALIZED UNIONS AND INTERSECTIONS OF SETS; 1. The concept of generalized union and intersection; 2. The properties of generalized unions and intersections of sets | |
505 | 8 | |a CHAPTER V. CARTESIAN PRODUCTS OF SETS. RELATIONS. FUNCTIONS AS RELATIONS1. Cartesian products; 2. Binary relations; 3. Propositional functions of two variables; 4. Reflexive, irreflexive, symmetric, asymmetric, antisymmetric, and transitive relations; 5. Functions as relations; CHAPTER VI. GENERALIZED PRODUCTS. m-ARY RELATIONS. FUNCTIONS OF SEVERAL VARIABLES. IMAGES AND INVERSE IMAGES UNDER A FUNCTION; 1. Generalized products; 2. m-ary relations; 3. Propositional functions of m variables; 4. Functions of several variables; 5. Images and inverse images under a function | |
505 | 8 | |a CHAPTER VII. EQUIVALENCE RELATIONS1. Definition of equivalence relations. Method of identification; 2. Application of the method of identification to the construction of integers; 3. Application of the method of identification to the construction of rational numbers; 4. Note on Cantor's theory of real numbers; CHAPTER VIII. POWERS OF SETS; 1. Equipotent sets. Power of a set; 2. Enumerable sets; 3. Examples of non-enumerable sets; 4. Inequalities for cardinal numbers. The Cantor-Bernstein theorem; 5. Sets of the power of the continuum | |
505 | 8 | |a 6. The power set. Cantor's theorem. Consequences of Cantor's theoremCHAPTER IX. ORDERED SETS; 1. Ordering relations; 2. Maximal and minimal elements; 3 Subsets of ordered sets. The Kuratowski-Zorn lemma; 4. Note on lattices; 5. Quasi-ordering relations; 6. Note on directed sets; CHAPTER X. LINEARLY ORDERED SETS; 1. Linear orderings; 2. Isomorphism of linearly ordered sets; 3. Dense linear ordering; 4. Continuous linear orderings; CHAPTER XI. WELL-ORDERED SETS; 1. Well-ordering relations. Ordinal numbers; 2. Comparison of ordinal numbers; 3. Sets of ordinal numbers | |
520 | |a Introduction to Modern Mathematics. | ||
650 | 0 | |a Mathematics. | |
650 | 2 | |a Mathematics |0 (DNLM)D008433 | |
650 | 6 | |a Math�ematiques. |0 (CaQQLa)201-0068291 | |
650 | 7 | |a mathematics. |2 aat |0 (CStmoGRI)aat300054522 | |
650 | 7 | |a applied mathematics. |2 aat |0 (CStmoGRI)aat300054524 | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 7 | |a Mathematics |2 fast |0 (OCoLC)fst01012163 | |
650 | 1 | 7 | |a Wiskunde. |2 gtt |
650 | 1 | 7 | |a Wiskundige logica. |2 gtt |
776 | 0 | 8 | |i Print version: |a Rasiowa, Helena. |s Wst�ep do matematyki wsp�o�c�zesnej. English. |t Introduction to modern mathematics. |d Amsterdam, North-Holland Pub. Co., 1973 |w (DLC) 72088575 |w (OCoLC)713964 |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780720420678 |z Texto completo |