Cargando…

Computational geometry /

Machine Intelligence and Pattern Recognition, Volume 2: Computational Geometry focuses on the operations, processes, methodologies, and approaches involved in computational geometry, including algorithms, polygons, convex hulls, and bucketing techniques. The selection first ponders on optimal parall...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Toussaint, Godfried T., 1944-2019 (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; New York : New York, N.Y. : North-Holland ; Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., 1985.
Colección:Machine intelligence and pattern recognition ; v. 2.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Computational Geometry; Copyright Page; Dedication; PREFACE; Table of Contents; CHAPTER 1. OPTIMAL PARALLEL ALGORITHMS FOR SELECTION, SORTING AND COMPUTING CONVEX HULLS; 1. INTRODUCTION; 2. COMPUTATIONAL MODEL; 3. A PARALLEL ALGORITHM FOR SELECTION; 4. A PARALLEL ALGORITHM FOR SORTING; 5. A PARALLEL ALGORITHM FOR COMPUTING CONVEX HULLS; 6. CONCLUSION; 7. FOOTNOTES; 8. REFERENCES; CHAPTER 2. SIMPLE ON-LINE ALGORITHMS FOR CONVEX POLYGONS; Abstract; I. Introduction; II. Convex Hulls, Convex Polygons, and their Representations; III. Point Insertion
  • IV. Intersection of a Convex Polygon and a HalfplaneV. Conclusions; References; Appendix A; Appendix B; CHAPTER 3. ON GEOMETRIC ALGORITHMS THAT USE THE FURTHEST-POINT VORONOI DIAGRAM; I. INTRODUCTION; II. THE ALGORITHMS THAT USE THE FURTHEST-POINT VORONOI DIAGRAM; III. MAIN RESULTS; IV. CONCLUDING REMARKS; ACKNOWLEDGEMENT; REFERENCES; CHAPTER 4. OPTIMAL CONVEX DECOMPOSITIONS; Abstract; 1. Introduction; 2. The Geometric Ingredients; 3. The Polynomial Time Algorithm; 4. Towards an Efficient Implementation; 5. Concluding Remarks; REFERENCES
  • CHAPTER 5. EXPECTED TIME ANALYSIS OF ALGORITHMS IN COMPUTATIONAL GEOMETRY1. INTRODUCTION; 2. THE BUCKETING PRINCIPLE; 3. THE DIVIDE-AND-CONQUER PRINCIPLE; 4. THE QUICK ELIMINATION (THROW-AWAY) PRINCIPLE; 5. REFERENCES; Chapter 6. Practical Use of Bucketing Techniques in Computational Geometry; 1. Introduction; 2. Minimum-Weight Perfect Matching in the Plane; 3. Voronoi Diagrams; 4. Point-Location Problem; 5. Range-Search Problems; 6. The Shortest-Path Problem; 7. Possibility of the Use of Nonrectangular Buckets; References; Chapter 7. Minimum Decompositions of Polygonal Objects
  • CHAPTER 10. AN IMPLEMENTATION STUDY OF TWO ALGORITHMS FOR THE MINIMUM SPANNING CIRCLE PROBLEM1. INTRODUCTION AND PROBLEM STATEMENT; 2. THE SHRINKING ALGORITHM; 3. The Rolling Algorithm; 4. Comments on the two programs; 5. References; Chapter 11. Curve Similarity via Signatures; ABSTRACT; 1. Introduction; 2. Properties of the Signature; 3. Distance Measures; 4. Similar /Dissimilar Separation; 5. Robustness under Distortion; 6. Conclusion; Acknowledgments; REFERENCES; CHAPTER 12. A METHOD FOR PROVING LOWER BOUNDS FOR CERTAIN GEOMETRIC PROBLEMS; Abstract; I. Introduction