|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
SCIDIR_ocn680274256 |
003 |
OCoLC |
005 |
20231117044504.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
101110s1977 nyua o 001 0 eng d |
040 |
|
|
|a OCLCE
|b eng
|e pn
|c OCLCE
|d OCLCQ
|d OCLCF
|d OCLCO
|d OPELS
|d N$T
|d E7B
|d EBLCP
|d HEBIS
|d DEBSZ
|d YDXCP
|d OCLCQ
|d MERUC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d VLY
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 624468814
|a 898772046
|a 903957288
|a 922519534
|a 1100960123
|a 1162065685
|
020 |
|
|
|a 9781483260709
|q (electronic bk.)
|
020 |
|
|
|a 1483260704
|q (electronic bk.)
|
020 |
|
|
|a 9780121190507
|q (electronic bk.)
|
020 |
|
|
|a 0121190501
|q (electronic bk.)
|
035 |
|
|
|a (OCoLC)680274256
|z (OCoLC)624468814
|z (OCoLC)898772046
|z (OCoLC)903957288
|z (OCoLC)922519534
|z (OCoLC)1100960123
|z (OCoLC)1162065685
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA261
|b .B62 1977
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515/.63
|2 22
|
100 |
1 |
|
|a Bourne, Donald Edward.
|
245 |
1 |
0 |
|a Vector analysis and cartesian tensors /
|c D.E. Bourne and P.C. Kendall.
|
250 |
|
|
|a 2d ed.
|
260 |
|
|
|a New York :
|b AP [i.e. Academic Press],
|c 1977.
|
300 |
|
|
|a 1 online resource (ix, 256 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2010.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2010
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Vector Analysis and Cartesian Tensors.
|
505 |
0 |
|
|a Front Cover; Vector Analysis and Cartesian Tensors; Copyright Page; Dedication; Preface; Table of Contents; Chapter 1. Rectangular Cartesian Coordinates and Rotation of Axes; 1.1 Rectangular cartesian coordinates; 1.2 Direction cosines and direction ratios; 1.3 Angles between lines through the origin; 1.4 The orthogonal projection of one line on another; 1.5 Rotation of axes; 1.6 The summation convention and its use; 1.7 Invariance with respect to a rotation of the axes; 1.8 Matrix notation; Chapter 2. Scalar and Vector Algebra; 2.1 Scalars; 2.2 Vectors: basic notions
|
505 |
8 |
|
|a 2.3 Multiplication of a vector by a scalar2.4 Addition and subtraction of vectors; 2.5 The unit vectors i, j, k; 2.6 Scalar products; 2.7 Vector products; 2.8 The triple scalar product; 2.9 The triple vector product; 2.10 Products of four vectors; 2.11 Bound vectors; Chapter 3. Vector Functions of a Real Variable. Differential Geometry of Curves; 3.1 Vector functions and their geometrical representation; 3.2 Differentiation of vectors; 3.3 Differentiation rules; 3.4 The tangent to a curve. Smooth, piecewise smooth, and simple curves; 3.5 Arc length; 3.6 Curvature and torsion
|
505 |
8 |
|
|a 4.14 Vector analysis in n-dimensional spaceChapter 5. Line, Surface, and Volume Integrals; 5.1 Line integral of a scalar field; 5.2 Line integrals of a vector field; 5.3 Repeated integrals; 5.4 Double and triple integrals; 5.5 Surfaces; 5.6 Surface integrals; 5.7 Volume integrals; Chapter 6. Integral Theorems; 6.1 Introduction; 6.2 The Divergence Theorem (Gauss's theorem); 6.3 Green's theorems; 6.4 Stokes's theorem; 6.5 Limit definitions of div F and curl F; 6.6 Geometrical and physical significance of divergence and curl; Chapter 7. Applications in Potential Theory; 7.1 Connectivity
|
505 |
8 |
|
|a 7.2 The scalar potential7.3 The vector potential; 7.4 Poisson's equation; 7.5 Poisson's equation in vector form; 7.6 Helmholtz's theorem; 7.7 Solid angles; Chapter 8. Cartesian Tensors; 8.1 Introduction; 8.2 Cartesian tensors: basic algebra; 8.3 Isotropic tensors; 8.4 Tensor fields; 8.5 The divergence theorem in tensor field theory; Chapter 9. Representation Theorems for Isotropic Tensor Functions; 9.1 Introduction; 9.2 Diagonalization of second order symmetrical tensors; 9.3 Invariants of second order symmetrical tensors; 9.4 Representation of isotropic vector functions
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Vector analysis.
|
650 |
|
0 |
|a Calculus of tensors.
|
650 |
|
6 |
|a Analyse vectorielle.
|0 (CaQQLa)201-0000838
|
650 |
|
6 |
|a Calcul tensoriel.
|0 (CaQQLa)201-0030334
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Calculus of tensors
|2 fast
|0 (OCoLC)fst00844137
|
650 |
|
7 |
|a Vector analysis
|2 fast
|0 (OCoLC)fst01164651
|
700 |
1 |
|
|a Kendall, P. C.
|q (Peter Calvin),
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Bourne, D.E.
|t Vector Analysis and Cartesian Tensors.
|d Burlington : Elsevier Science, �2014
|z 9780121190507
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780121190507
|z Texto completo
|