Cargando…

Vector analysis and cartesian tensors /

Vector Analysis and Cartesian Tensors.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bourne, Donald Edward, Kendall, P. C. (Peter Calvin) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : AP [i.e. Academic Press], 1977.
Edición:2d ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 SCIDIR_ocn680274256
003 OCoLC
005 20231117044504.0
006 m o d
007 cr cnu---unuuu
008 101110s1977 nyua o 001 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCF  |d OCLCO  |d OPELS  |d N$T  |d E7B  |d EBLCP  |d HEBIS  |d DEBSZ  |d YDXCP  |d OCLCQ  |d MERUC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d VLY  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 624468814  |a 898772046  |a 903957288  |a 922519534  |a 1100960123  |a 1162065685 
020 |a 9781483260709  |q (electronic bk.) 
020 |a 1483260704  |q (electronic bk.) 
020 |a 9780121190507  |q (electronic bk.) 
020 |a 0121190501  |q (electronic bk.) 
035 |a (OCoLC)680274256  |z (OCoLC)624468814  |z (OCoLC)898772046  |z (OCoLC)903957288  |z (OCoLC)922519534  |z (OCoLC)1100960123  |z (OCoLC)1162065685 
042 |a dlr 
050 4 |a QA261  |b .B62 1977 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.63  |2 22 
100 1 |a Bourne, Donald Edward. 
245 1 0 |a Vector analysis and cartesian tensors /  |c D.E. Bourne and P.C. Kendall. 
250 |a 2d ed. 
260 |a New York :  |b AP [i.e. Academic Press],  |c 1977. 
300 |a 1 online resource (ix, 256 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
520 |a Vector Analysis and Cartesian Tensors. 
505 0 |a Front Cover; Vector Analysis and Cartesian Tensors; Copyright Page; Dedication; Preface; Table of Contents; Chapter 1. Rectangular Cartesian Coordinates and Rotation of Axes; 1.1 Rectangular cartesian coordinates; 1.2 Direction cosines and direction ratios; 1.3 Angles between lines through the origin; 1.4 The orthogonal projection of one line on another; 1.5 Rotation of axes; 1.6 The summation convention and its use; 1.7 Invariance with respect to a rotation of the axes; 1.8 Matrix notation; Chapter 2. Scalar and Vector Algebra; 2.1 Scalars; 2.2 Vectors: basic notions 
505 8 |a 2.3 Multiplication of a vector by a scalar2.4 Addition and subtraction of vectors; 2.5 The unit vectors i, j, k; 2.6 Scalar products; 2.7 Vector products; 2.8 The triple scalar product; 2.9 The triple vector product; 2.10 Products of four vectors; 2.11 Bound vectors; Chapter 3. Vector Functions of a Real Variable. Differential Geometry of Curves; 3.1 Vector functions and their geometrical representation; 3.2 Differentiation of vectors; 3.3 Differentiation rules; 3.4 The tangent to a curve. Smooth, piecewise smooth, and simple curves; 3.5 Arc length; 3.6 Curvature and torsion 
505 8 |a 4.14 Vector analysis in n-dimensional spaceChapter 5. Line, Surface, and Volume Integrals; 5.1 Line integral of a scalar field; 5.2 Line integrals of a vector field; 5.3 Repeated integrals; 5.4 Double and triple integrals; 5.5 Surfaces; 5.6 Surface integrals; 5.7 Volume integrals; Chapter 6. Integral Theorems; 6.1 Introduction; 6.2 The Divergence Theorem (Gauss's theorem); 6.3 Green's theorems; 6.4 Stokes's theorem; 6.5 Limit definitions of div F and curl F; 6.6 Geometrical and physical significance of divergence and curl; Chapter 7. Applications in Potential Theory; 7.1 Connectivity 
505 8 |a 7.2 The scalar potential7.3 The vector potential; 7.4 Poisson's equation; 7.5 Poisson's equation in vector form; 7.6 Helmholtz's theorem; 7.7 Solid angles; Chapter 8. Cartesian Tensors; 8.1 Introduction; 8.2 Cartesian tensors: basic algebra; 8.3 Isotropic tensors; 8.4 Tensor fields; 8.5 The divergence theorem in tensor field theory; Chapter 9. Representation Theorems for Isotropic Tensor Functions; 9.1 Introduction; 9.2 Diagonalization of second order symmetrical tensors; 9.3 Invariants of second order symmetrical tensors; 9.4 Representation of isotropic vector functions 
546 |a English. 
650 0 |a Vector analysis. 
650 0 |a Calculus of tensors. 
650 6 |a Analyse vectorielle.  |0 (CaQQLa)201-0000838 
650 6 |a Calcul tensoriel.  |0 (CaQQLa)201-0030334 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Calculus of tensors  |2 fast  |0 (OCoLC)fst00844137 
650 7 |a Vector analysis  |2 fast  |0 (OCoLC)fst01164651 
700 1 |a Kendall, P. C.  |q (Peter Calvin),  |e author. 
776 0 8 |i Print version:  |a Bourne, D.E.  |t Vector Analysis and Cartesian Tensors.  |d Burlington : Elsevier Science, �2014  |z 9780121190507 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780121190507  |z Texto completo