Cargando…

Statistical mechanics /

Statistical Mechanics discusses the fundamental concepts involved in understanding the physical properties of matter in bulk on the basis of the dynamical behavior of its microscopic constituents. The book emphasizes the equilibrium states of physical systems. The text first details the statistical...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pathria, R. K.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford ; New York : Pergamon Press, [1972]
Edición:[1st ed.].
Colección:International series of monographs in natural philosophy ; v. 45.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 2.1. Phase space of a classical system2.2. Liouville's theorem and its consequences; 2.3. The microcanonical ensemble; 2.4. Examples; 2.5. Quantum states and the phase space; 2.6. Two important theorems-the equipartition and the virial
  • Problems; CHAPTER 3. THE CANONICAL ENSEMBLE; 3.1. Equilibrium between a system and a heat reservoir; 3.2. A system in the canonical ensemble; 3.3. Physical significance of the various statistical quantities; 3.4. Alternative expressions for the partition function; 3.5. The classical systems.
  • 3.6. Energy fluctuations in the canonical ensemble: correspondence with the microcanonical ensemble3.7. A system of harmonic oscillators; 3.8. The statistics of paramagnetism; 3.9. Thermodynamics of magnetic systems: negative temperatures; Problems; CHAPTER 4. THE GRAND CANONICAL ENSEMBLE; 4.1. Equilibrium between a system and a particle-energy reservoir; 4.2. A system in the grand canonical ensemble; 4.3. Physical significance of the statistical quantities; 4.4. Examples; 4.5. Density and energy fluctuations in the grand canonical ensemble: correspondence with other ensembles; Problems.
  • CHAPTER 5. FORMULATION OF QUANTUM STATISTICS5.1. Quantum-mechanical ensemble theory: the density matrix; 5.2. Statistics of the various ensembles; 5.3. Examples; 5.4. Systems composed of indistinguishable particles; 5.5. The density matrix and the partition function of a system of free particles; Problems; CHAPTER 6. THE THEORY OF SIMPLE GASES; 6.1. An ideal gas in a quantum-mechanical microcanonical ensemble; 6.2. An ideal gas in other quantum-mechanical ensembles; 6.3. Statistics of the occupation numbers; 6.4. Kinetic considerations; 6.5. A gaseous system in mass motion.
  • 6.6. Gaseous systems composed of molecules with internal motionProblems; CHAPTER 7. IDEAL BOSE SYSTEMS; 7.1. Thermodynamic behavior of an ideal Bose gas; 7.2. Thermodynamics of the black-body radiation; 7.3. The field of sound waves; 7.4. Inertial density of the sound field; 7.5. Elementary excitations in liquid helium II; Problems; CHAPTER 8. IDEAL FERMI SYSTEMS; 8.1. Thermodynamic behavior of an ideal Fermi gas; 8.2. Magnetic behavior of an ideal Fermi gas; 8.3. The electron gas in metals; 8.4. Statistical equilibrium of white dwarf stars; 8.5. Statistical model of the atom; Problems.