|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
SCIDIR_ocn680000202 |
003 |
OCoLC |
005 |
20231117044458.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
101107s1971 nyua ob 001 0 eng d |
040 |
|
|
|a OCLCE
|b eng
|e pn
|c OCLCE
|d OCLCA
|d OCLCQ
|d OCLCF
|d OCLCO
|d OPELS
|d N$T
|d E7B
|d YDXCP
|d EBLCP
|d DEBSZ
|d OCLCQ
|d OCLCO
|d MERUC
|d INARC
|d OCLCQ
|d UKAHL
|d UKBTH
|d OCLCQ
|d LUN
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 625772122
|a 898422356
|a 1035900221
|a 1100954751
|a 1113635869
|a 1159633898
|a 1397724910
|
020 |
|
|
|a 9781483274133
|q (electronic bk.)
|
020 |
|
|
|a 1483274136
|q (electronic bk.)
|
020 |
|
|
|a 9780127730509
|q (electronic bk.)
|
020 |
|
|
|a 0127730508
|q (electronic bk.)
|
035 |
|
|
|a (OCoLC)680000202
|z (OCoLC)625772122
|z (OCoLC)898422356
|z (OCoLC)1035900221
|z (OCoLC)1100954751
|z (OCoLC)1113635869
|z (OCoLC)1159633898
|z (OCoLC)1397724910
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA195
|b .Y68
|
072 |
|
7 |
|a MAT
|x 002040
|2 bisacsh
|
082 |
0 |
4 |
|a 512.9/42
|2 22
|
084 |
|
|
|a SK 220
|2 rvk
|
084 |
|
|
|a SK 910
|2 rvk
|
100 |
1 |
|
|a Young, David M.,
|d 1923-2008.
|
245 |
1 |
0 |
|a Iterative solution of large linear systems /
|c David M. Young.
|
260 |
|
|
|a New York :
|b Academic Press,
|c 1971.
|
300 |
|
|
|a 1 online resource (xxiv, 570 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Computer science and applied mathematics
|
504 |
|
|
|a Includes bibliographical references (pages 556-563).
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2010.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2010
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Iterative Solution of Large Linear Systems; Copyright Page; Dedication; Table of Contents; Preface; Acknowledgments; Notation; List of Fundamental Matrix Properties; List of Iterative Methods; Chapter 1. Introduction; 1.1. The Model Problem; Supplementary Discussion; Exercises; Chapter 2. Matrix Preliminaries; 2.1. Review of Matrix Theory; 2.2. Hermitian Matrices and Positive Definite Matrices; 2.3. Vector Norms and Matrix Norms; 2.4. Convergence of Sequences of Vectors and Matrices; 2.5. Irreducibility and Weak Diagonal Dominance; 2.6. Property A.
|
505 |
8 |
|
|a 2.7. L-Matrices and Related Matrices2.8. Illustrations; Supplementary Discussion; Exercises; Chapter 3. Linear Stationary Iterative Methods; 3.1. Introduction; 3.2. Consistency, Reciprocal Consistency, and Complete Consistency; 3.3. Basic Linear Stationary Iterative Methods; 3.4. Generation of Completely Consistent Methods; 3.5. General Convergence Theorems; 3.6. Alternative Convergence Conditions; 3.7. Rates of Convergence; 3.8. The Jordan Condition Number of a 2 � 2 Matrix; Supplementary Discussion; Exercises; Chapter 4. Convergence of the Basic Iterative Methods.
|
505 |
8 |
|
|a 4.1. General Convergence Theorems4.2. Irreducible Matrices with Weak Diagonal Dominance; 4.3. Positive Definite Matrices; 4.4. The SOR Method with Varying Relaxation Factors; 4.5. L-Matrices and Related Matrices; 4.6. Rates of Convergence of the J and GS Methods for the Model Problem; Supplementary Discussion; Exercises; Chapter 5. Eigenvalues of the SOR Method for Consistently Ordered Matrices; 5.1. Introduction; 5.2. Block Tri-Diagonal Matrices; 5.3. Consistently Ordered Matrices and Ordering Vectors; 5.4. Property A; 5.5. Nonmigratory Permutations.
|
505 |
8 |
|
|a 6.6. Iterative Methods of Choosing [omega]b 6.7. An Upper Bound for [mu]; 6.8. A Priori Determination of [mu]: Exact Methods; 6.9. A Priori Determination of [mu]: Approximate Values; 6.10. Numerical Results; Supplementary Discussion; Exercises; Chapter 7. Norms of the SOR Method; 7.1. The Jordan Canonical Form of L[omega]; 7.2. Basic Eigenvalue Relation; 7.3. Determination of L[omega] D; 7.4. Determination of L[omega] D; 7.5. Determination of L[omega] A; 7.6. Determination of L[omega] A; 7.7. Comparison of L[omega]mb D and L[omega]mb IIA; Supplementary Discussion; Exercises; Chapter 8. The Modified SOR Method: Fixed Parameters.
|
520 |
|
|
|a Iterative Solution of Large Linear Systems.
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Equations, Simultaneous.
|
650 |
|
0 |
|a Iterative methods (Mathematics)
|
650 |
|
0 |
|a Linear systems.
|
650 |
|
0 |
|a Iterative methods (Mathematics)
|x Methodology.
|
650 |
|
6 |
|a Syst�emes d'�equations.
|0 (CaQQLa)201-0041484
|
650 |
|
6 |
|a It�eration (Math�ematiques)
|0 (CaQQLa)201-0091650
|x M�ethodologie.
|0 (CaQQLa)201-0379663
|
650 |
|
6 |
|a It�eration (Math�ematiques)
|0 (CaQQLa)201-0091650
|
650 |
|
6 |
|a Syst�emes lin�eaires.
|0 (CaQQLa)201-0041485
|
650 |
|
7 |
|a MATHEMATICS
|x Algebra
|x Intermediate.
|2 bisacsh
|
650 |
|
7 |
|a Equations, Simultaneous
|2 fast
|0 (OCoLC)fst00914514
|
650 |
|
7 |
|a Iterative methods (Mathematics)
|2 fast
|0 (OCoLC)fst00980827
|
650 |
|
7 |
|a Linear systems
|2 fast
|0 (OCoLC)fst00999098
|
650 |
|
7 |
|a Iteration
|2 gnd
|0 (DE-588)4123457-1
|
650 |
|
7 |
|a Lineare Algebra
|2 gnd
|0 (DE-588)4035811-2
|
650 |
|
7 |
|a Lineares Gleichungssystem
|2 gnd
|0 (DE-588)4035826-4
|
650 |
|
7 |
|a N�aherungsrechnung
|2 gnd
|0 (DE-588)4041115-1
|
776 |
0 |
8 |
|i Print version:
|a Young, David M.
|t Iterative Solution of Large Linear Systems.
|d Burlington : Elsevier Science, �2014
|z 9780127730509
|
830 |
|
0 |
|a Computer science and applied mathematics.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780127730509
|z Texto completo
|