|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn679953843 |
003 |
OCoLC |
005 |
20231117044455.0 |
006 |
m o d |
007 |
cr bn||||||abp |
007 |
cr bn||||||ada |
008 |
101107s1976 ne a ob 001 0 eng d |
040 |
|
|
|a OCLCE
|b eng
|e pn
|c OCLCE
|d OCLCQ
|d OPELS
|d OCLCQ
|d E7B
|d OPELS
|d OCLCF
|d OCLCQ
|d N$T
|d IDEBK
|d YDXCP
|d OCLCQ
|d OCLCO
|d LEAUB
|d VLY
|d LUN
|d S2H
|d OCLCO
|d OCLCQ
|d OCLCO
|d COM
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 842885954
|a 842919951
|a 1162023700
|
020 |
|
|
|a 9780720423709
|q (electronic bk.)
|
020 |
|
|
|a 0720423708
|q (electronic bk.)
|
020 |
|
|
|a 9780444601919
|q (electronic bk.)
|
020 |
|
|
|a 0444601910
|q (electronic bk.)
|
020 |
|
|
|a 1299537308
|q (ebk)
|
020 |
|
|
|a 9781299537309
|q (ebk)
|
020 |
|
|
|z 0444107983
|q (American Elsevier)
|
020 |
|
|
|z 9780444107985
|q (American Elsevier)
|
020 |
|
|
|z 0720423708
|
020 |
|
|
|z 0720423503
|
020 |
|
|
|z 9780720423501
|
035 |
|
|
|a (OCoLC)679953843
|z (OCoLC)842885954
|z (OCoLC)842919951
|z (OCoLC)1162023700
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA371
|
072 |
|
7 |
|a SCI
|x 030000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 031000
|2 bisacsh
|
082 |
0 |
4 |
|a 551/.1133
|
082 |
0 |
4 |
|a 515/.353
|2 18
|
084 |
|
|
|a 31.80
|2 bcl
|
084 |
|
|
|a SK 950
|2 rvk
|
084 |
|
|
|a UF 5000
|2 rvk
|
100 |
1 |
|
|a Roseau, Maurice.
|
245 |
1 |
0 |
|a Asymptotic wave theory /
|c by Maurice Roseau.
|
260 |
|
|
|a Amsterdam :
|b North-Holland Pub. Co. ;
|a New York :
|b American Elsevier Pub. Co.,
|c 1976.
|
300 |
|
|
|a 1 online resource (x, 349 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a North-Holland series in applied mathematics and mechanics ;
|v v. 20
|
504 |
|
|
|a Includes bibliographical references (pages 345-347) and index.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2010.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2010
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Asymptotic Wave Theory; Copyright Page; Preface; Table of Contents; CHAPTER 1. THE FOURIER-LAPLACE INTEGRAL; 1.1. The Laplace transform; 1.2. The Fourier transform in L1; 1.3. The Fourier transform in L2; 1.4. The Laplace transform (continued); 1.5. The Mellin transform; CHAPTER 2. SPECIAL FUNCTIONS; 2.I. The gamma function; 2. II. The Bessel functions; CHAPTER 3. THE WAVE EQUATION; 3.1. Introduction; 3.2. The reflexion and refraction of a plane wave at the interface between two homogeneous media; 3.3. Spherical waves; 3.4. Cylindrical waves; 3.5. Group velocity; 3.6. Wave guide
|
505 |
8 |
|
|a 3.7. Successive reflexions of plane waves at two parallel rigid planes3.8. The relation between spherical and plane waves; 3.9. The reflexion of a spherical wave at a plane interface; 3.10. An alternative approach to Weyl's formula. Poritsky's generalisation; CHAPTER 4. ASYMPTOTIC METHODS; 4.1. Asymptotic expansion; 4.2. The asymptotic expansion of Hankel's functions in the neighborhood of the point at infinity; 4.3. The Laplace method; 4.4. Asymptotic relations and Laplace's transform; 4.5. The Laplace method (continued); 4.6. The method of steepest descent
|
505 |
8 |
|
|a 4.7. Waves in linear dispersive media4.8. The asymptotic representation of the reflected wave in the problem of a spherical wave impinging on a plane interface. The lateral wave; 4.9. The method of steepest descent; an extension to the case when some pole is located near the saddle; 4.10. The asymptotic representation of Hankel's functions of large order; 4.11. An asymptotic representation of Legendre's functions of large order; 4.12. The asymptotic representation of Hankel's functions of large order (continued); CHAPTER 5. SCATTERING MATRIXTHEORY; 5.1. Introduction; 5.I. The direct problem
|
505 |
8 |
|
|a 5. II. The inverse problemCHAPTER 6. FLOW IN OPEN CHANNEL; ASYMPTOTIC SOLUTION OF SOME LINEAR AND NON-LINEAR WAVE EQUATIONS; 6.I. The kinematics and dynamics of flow in open channel; 6. II. The asymptotic representation of the solution of the wave equation; 6. III. Non-linear wave theory; CHAPTER 7. SEISMIC WAVES; 7.1. Waves in elastic solids; 7.2. Plane waves; 7.3. Reflexion and refraction of plane elastic waves; 7.4. Waves of kind I, II, III; 7.5. Analytic representation of P and S waves; 7.6. The layered spherical model; 7.7. The energy balance
|
505 |
8 |
|
|a 7.8. The reflexion and transmission coefficients7.9. The wave system in the layered spherical model; 7.10. The P, PcP, PcS, PKP waves produced by a point source located outside the core; 7.11. Application of the method of steepest descent to P and PcP wave integrals; 7.12. The diffracted PcP wave; CHAPTER 8. SOME PROBLEMS IN WATER WAVE THEORY; Introduction; 8.I. Oscillations in an infinite channel of variable depth; 8. II. A diffraction problem; REFERENCES; INDEX
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Wave-motion, Theory of.
|
650 |
|
0 |
|a Wave equation.
|
650 |
|
0 |
|a Asymptotic expansions.
|
650 |
|
6 |
|a Th�eorie du mouvement ondulatoire.
|0 (CaQQLa)201-0015063
|
650 |
|
6 |
|a �Equation d'onde.
|
650 |
|
6 |
|a D�eveloppements asymptotiques.
|0 (CaQQLa)201-0019870
|
650 |
|
6 |
|a �Equations d'onde.
|0 (CaQQLa)201-0022571
|
650 |
|
7 |
|a SCIENCE
|x Earth Sciences
|x Geography.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Earth Sciences
|x Geology.
|2 bisacsh
|
650 |
|
7 |
|a Asymptotic expansions
|2 fast
|0 (OCoLC)fst00819868
|
650 |
|
7 |
|a Wave equation
|2 fast
|0 (OCoLC)fst01172869
|
650 |
|
7 |
|a Wave-motion, Theory of
|2 fast
|0 (OCoLC)fst01172888
|
650 |
|
7 |
|a Asymptotische Methode
|2 gnd
|0 (DE-588)4287476-2
|
650 |
|
7 |
|a Wellengleichung
|2 gnd
|0 (DE-588)4065315-8
|
650 |
|
7 |
|a Welle
|2 gnd
|0 (DE-588)4065310-9
|
650 |
|
7 |
|a Mouvement ondulatoire, Th�eorie du.
|2 ram
|
650 |
|
7 |
|a �Equations d'onde.
|2 ram
|
650 |
|
7 |
|a D�eveloppements asymptotiques.
|2 ram
|
650 |
|
7 |
|a Analyse.
|2 ram
|
650 |
|
7 |
|a Asymptotes.
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Roseau, Maurice.
|t Asymptotic wave theory.
|d Amsterdam : North-Holland Pub. Co. ; New York : American Elsevier Pub. Co., 1976
|w (DLC) 74026167
|w (OCoLC)1859600
|
830 |
|
0 |
|a North-Holland series in applied mathematics and mechanics ;
|v v. 20.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780720423709
|z Texto completo
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/bookseries/00665479
|z Texto completo
|