MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn679953843
003 OCoLC
005 20231117044455.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 101107s1976 ne a ob 001 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OPELS  |d OCLCQ  |d E7B  |d OPELS  |d OCLCF  |d OCLCQ  |d N$T  |d IDEBK  |d YDXCP  |d OCLCQ  |d OCLCO  |d LEAUB  |d VLY  |d LUN  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 842885954  |a 842919951  |a 1162023700 
020 |a 9780720423709  |q (electronic bk.) 
020 |a 0720423708  |q (electronic bk.) 
020 |a 9780444601919  |q (electronic bk.) 
020 |a 0444601910  |q (electronic bk.) 
020 |a 1299537308  |q (ebk) 
020 |a 9781299537309  |q (ebk) 
020 |z 0444107983  |q (American Elsevier) 
020 |z 9780444107985  |q (American Elsevier) 
020 |z 0720423708 
020 |z 0720423503 
020 |z 9780720423501 
035 |a (OCoLC)679953843  |z (OCoLC)842885954  |z (OCoLC)842919951  |z (OCoLC)1162023700 
042 |a dlr 
050 4 |a QA371 
072 7 |a SCI  |x 030000  |2 bisacsh 
072 7 |a SCI  |x 031000  |2 bisacsh 
082 0 4 |a 551/.1133 
082 0 4 |a 515/.353  |2 18 
084 |a 31.80  |2 bcl 
084 |a SK 950  |2 rvk 
084 |a UF 5000  |2 rvk 
100 1 |a Roseau, Maurice. 
245 1 0 |a Asymptotic wave theory /  |c by Maurice Roseau. 
260 |a Amsterdam :  |b North-Holland Pub. Co. ;  |a New York :  |b American Elsevier Pub. Co.,  |c 1976. 
300 |a 1 online resource (x, 349 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a North-Holland series in applied mathematics and mechanics ;  |v v. 20 
504 |a Includes bibliographical references (pages 345-347) and index. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |a Front Cover; Asymptotic Wave Theory; Copyright Page; Preface; Table of Contents; CHAPTER 1. THE FOURIER-LAPLACE INTEGRAL; 1.1. The Laplace transform; 1.2. The Fourier transform in L1; 1.3. The Fourier transform in L2; 1.4. The Laplace transform (continued); 1.5. The Mellin transform; CHAPTER 2. SPECIAL FUNCTIONS; 2.I. The gamma function; 2. II. The Bessel functions; CHAPTER 3. THE WAVE EQUATION; 3.1. Introduction; 3.2. The reflexion and refraction of a plane wave at the interface between two homogeneous media; 3.3. Spherical waves; 3.4. Cylindrical waves; 3.5. Group velocity; 3.6. Wave guide 
505 8 |a 3.7. Successive reflexions of plane waves at two parallel rigid planes3.8. The relation between spherical and plane waves; 3.9. The reflexion of a spherical wave at a plane interface; 3.10. An alternative approach to Weyl's formula. Poritsky's generalisation; CHAPTER 4. ASYMPTOTIC METHODS; 4.1. Asymptotic expansion; 4.2. The asymptotic expansion of Hankel's functions in the neighborhood of the point at infinity; 4.3. The Laplace method; 4.4. Asymptotic relations and Laplace's transform; 4.5. The Laplace method (continued); 4.6. The method of steepest descent 
505 8 |a 4.7. Waves in linear dispersive media4.8. The asymptotic representation of the reflected wave in the problem of a spherical wave impinging on a plane interface. The lateral wave; 4.9. The method of steepest descent; an extension to the case when some pole is located near the saddle; 4.10. The asymptotic representation of Hankel's functions of large order; 4.11. An asymptotic representation of Legendre's functions of large order; 4.12. The asymptotic representation of Hankel's functions of large order (continued); CHAPTER 5. SCATTERING MATRIXTHEORY; 5.1. Introduction; 5.I. The direct problem 
505 8 |a 5. II. The inverse problemCHAPTER 6. FLOW IN OPEN CHANNEL; ASYMPTOTIC SOLUTION OF SOME LINEAR AND NON-LINEAR WAVE EQUATIONS; 6.I. The kinematics and dynamics of flow in open channel; 6. II. The asymptotic representation of the solution of the wave equation; 6. III. Non-linear wave theory; CHAPTER 7. SEISMIC WAVES; 7.1. Waves in elastic solids; 7.2. Plane waves; 7.3. Reflexion and refraction of plane elastic waves; 7.4. Waves of kind I, II, III; 7.5. Analytic representation of P and S waves; 7.6. The layered spherical model; 7.7. The energy balance 
505 8 |a 7.8. The reflexion and transmission coefficients7.9. The wave system in the layered spherical model; 7.10. The P, PcP, PcS, PKP waves produced by a point source located outside the core; 7.11. Application of the method of steepest descent to P and PcP wave integrals; 7.12. The diffracted PcP wave; CHAPTER 8. SOME PROBLEMS IN WATER WAVE THEORY; Introduction; 8.I. Oscillations in an infinite channel of variable depth; 8. II. A diffraction problem; REFERENCES; INDEX 
546 |a English. 
650 0 |a Wave-motion, Theory of. 
650 0 |a Wave equation. 
650 0 |a Asymptotic expansions. 
650 6 |a Th�eorie du mouvement ondulatoire.  |0 (CaQQLa)201-0015063 
650 6 |a �Equation d'onde. 
650 6 |a D�eveloppements asymptotiques.  |0 (CaQQLa)201-0019870 
650 6 |a �Equations d'onde.  |0 (CaQQLa)201-0022571 
650 7 |a SCIENCE  |x Earth Sciences  |x Geography.  |2 bisacsh 
650 7 |a SCIENCE  |x Earth Sciences  |x Geology.  |2 bisacsh 
650 7 |a Asymptotic expansions  |2 fast  |0 (OCoLC)fst00819868 
650 7 |a Wave equation  |2 fast  |0 (OCoLC)fst01172869 
650 7 |a Wave-motion, Theory of  |2 fast  |0 (OCoLC)fst01172888 
650 7 |a Asymptotische Methode  |2 gnd  |0 (DE-588)4287476-2 
650 7 |a Wellengleichung  |2 gnd  |0 (DE-588)4065315-8 
650 7 |a Welle  |2 gnd  |0 (DE-588)4065310-9 
650 7 |a Mouvement ondulatoire, Th�eorie du.  |2 ram 
650 7 |a �Equations d'onde.  |2 ram 
650 7 |a D�eveloppements asymptotiques.  |2 ram 
650 7 |a Analyse.  |2 ram 
650 7 |a Asymptotes.  |2 ram 
776 0 8 |i Print version:  |a Roseau, Maurice.  |t Asymptotic wave theory.  |d Amsterdam : North-Holland Pub. Co. ; New York : American Elsevier Pub. Co., 1976  |w (DLC) 74026167  |w (OCoLC)1859600 
830 0 |a North-Holland series in applied mathematics and mechanics ;  |v v. 20. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780720423709  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/00665479  |z Texto completo