|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn679395209 |
003 |
OCoLC |
005 |
20231117044453.0 |
006 |
m o d |
007 |
cr bn||||||abp |
007 |
cr bn||||||ada |
008 |
101107s1975 nyu ob 001 0 eng d |
040 |
|
|
|a OCLCE
|b eng
|e pn
|c OCLCE
|d OCLCQ
|d OCLCF
|d OCLCO
|d OPELS
|d EBLCP
|d N$T
|d E7B
|d DEBSZ
|d OCLCQ
|d MERUC
|d OCLCQ
|d VLY
|d LUN
|d OCLCQ
|d OCLCO
|d S2H
|d OCLCO
|d COM
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 898771665
|a 1162560921
|
020 |
|
|
|a 9780124598607
|q (electronic bk.)
|
020 |
|
|
|a 0124598609
|q (electronic bk.)
|
020 |
|
|
|a 9781483218588
|
020 |
|
|
|a 1483218589
|
035 |
|
|
|a (OCoLC)679395209
|z (OCoLC)898771665
|z (OCoLC)1162560921
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA273
|
082 |
0 |
4 |
|a 519.2
|2 18
|
084 |
|
|
|a QH 170
|2 rvk
|
084 |
|
|
|a SK 820
|2 rvk
|
100 |
1 |
|
|a Lukacs, Eugene.
|
245 |
1 |
0 |
|a Stochastic convergence /
|c Eugene Lukacs.
|
250 |
|
|
|a 2d ed.
|
260 |
|
|
|a New York :
|b Academic Press,
|c 1975.
|
300 |
|
|
|a 1 online resource (xi, 200 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Probability and mathematical statistics ;
|v v. 30
|
504 |
|
|
|a Includes bibliographical references (pages 191-194) and index.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2010.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2010
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Stochastic Convergence; Copyright Page; Table of Contents; Preface to the Second Edition; Preface to the First Edition; List of Examples; Chapter 1. INTRODUCTION; 1.1. Survey of basic concepts; 1.2. Certain inequalities; 1.3. Characteristic functions; 1.4. Independence; 1.5. Monotone classes of sets (events); Exercises; Chapter 2. STOCHASTIC CONVERGENCE CONCEPTS AND THEIR PROPERTIES; 2.1. Definitions; 2.2. Relations among the various convergence concepts; 2.3. Convergence of sequences of mean values and of certain functions of random variables
|
505 |
8 |
|
|a 2.4. Criteria for stochastic convergence2.5. Further modes of stochastic convergence; 2.6. Information convergence; Exercises; Chapter 3. SPACES OF RANDOM VARIABLES; 3.1. Convergence in probability; 3.2. Almost certain convergence; 3.3. The spaces Lp; 3.4. The space of distribution functions; Exercises; Chapter 4. INFINITE SERIES OF RANDOM VARIABLES AND RELATED TOPICS; 4.1. The lemmas of Borel-Cantelli and the zero-one laws; 4.2. Convergence of series; 4.3. Some limit theorems; Exercises; Chapter 5. RANDOM POWER SERIES; 5.1. Definition and convergence of random power series
|
505 |
8 |
|
|a 5.2. The radius of convergence of a random power series5.3. Random power series with identically distributed coefficients; 5.4. Random power series with independent coefficients; 5.5. The analytic continuation of random power series; 5.6. Random entire functions; Exercises; Chapter 6. STOCHASTIC INTEGRALS AND DERIVATIVES; 6.1. Some definitions concerning stochastic processes; 6.2. Definition and existence of stochastic integrals; 6.3. L2-continuity and differentiation of stochastic processes; Exercises
|
505 |
8 |
|
|a Chapter 7. CHARACTERIZATION OF THE NORMAL DISTRIBUTION BY PROPERTIES OF INFINITE SUMS OF RANDOM VARIABLES7.1. Identically distributed linear forms; 7.2. A linear form and a monomial having the same distribution; 7.3. Independently distributed infinite sums; Exercises; Chapter 8. CHARACTERIZATION OF SOME STOCHASTIC PROCESSES; 8.1. Independence and a regression property of two stochastic integrals; 8.2. Identically distributed stochastic integrals; 8.3. Identity of the distribution of a stochastic integral and the increment of a process; 8.4. Characterization of stable processes; Exercises
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Stochastic processes.
|
650 |
|
0 |
|a Sequences (Mathematics)
|
650 |
|
0 |
|a Convergence.
|
650 |
|
2 |
|a Stochastic Processes
|0 (DNLM)D013269
|
650 |
|
6 |
|a Processus stochastiques.
|0 (CaQQLa)201-0002663
|
650 |
|
6 |
|a Suites (Math�ematiques)
|0 (CaQQLa)201-0061998
|
650 |
|
6 |
|a Convergence (Math�ematiques)
|0 (CaQQLa)201-0015663
|
650 |
|
7 |
|a Convergence
|2 fast
|0 (OCoLC)fst00877195
|
650 |
|
7 |
|a Sequences (Mathematics)
|2 fast
|0 (OCoLC)fst01112884
|
650 |
|
7 |
|a Stochastic processes
|2 fast
|0 (OCoLC)fst01133519
|
650 |
|
7 |
|a Konvergenz
|2 gnd
|0 (DE-588)4032326-2
|
650 |
|
7 |
|a Stochastik
|2 gnd
|0 (DE-588)4121729-9
|
650 |
|
7 |
|a Stochastische Konvergenz
|2 gnd
|0 (DE-588)4183376-4
|
650 |
|
7 |
|a Stochastischer Prozess
|2 gnd
|0 (DE-588)4057630-9
|
650 |
|
7 |
|a Wahrscheinlichkeitsrechnung
|2 gnd
|0 (DE-588)4064324-4
|
650 |
|
7 |
|a Zuf�allige Folge
|2 gnd
|0 (DE-588)4191092-8
|
776 |
0 |
8 |
|i Print version:
|a Lukacs, Eugene.
|t Stochastic convergence.
|b 2d ed.
|d New York : Academic Press, 1975
|w (DLC) 75003586
|w (OCoLC)1504668
|
830 |
|
0 |
|a Probability and mathematical statistics ;
|v v. 30.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780124598607
|z Texto completo
|