Cargando…

Mechanics : classical and quantum /

Mechanics: Classical and Quantum explains the principles of quantum mechanics via the medium of analytical mechanics. The book describes Schrodinger's formulation, the Hamilton-Jacobi equation, and the Lagrangian formulation. The author discusses the Harmonic Oscillator, the generalized coordin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Taylor, T. T. (Thomas Tallott)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford ; New York : Pergamon Press, 1976.
Edición:1st ed.
Colección:International series of monographs in natural philosophy ; v. 82.
Pergamon international library of science, technology, engineering, and social studies.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Mechanics: Classical and Quantum; Copyright Page; Table of Contents; PREFACE; CHAPTER 1. THE LAGRANGIAN FORMULATION OF MECHANICS; 1.01. The Harmonic Oscillator; a New Look at an Old Problem; 1.02. A System and its Configuration; 1.03. Generalized Coordinates and Velocities; 1.04. Kinetic Energy and the Generalized Momenta; 1.05. Lagrange's Equations; 1.06. Holonomic Constraints; 1.07. Electromagnetic Applications; 1.08. Hamilton's Principle; CHAPTER 2. THE HAMILTONIAN FORMULATION OF MECHANICS; 2.01. Hamilton's Equations; 2.02. The Hamiltonian as a Constant of the Motion.
  • 2.03. Hamiltonian Analysis of the Kepler Problem2.04. Phase Space; CHAPTER 3. HAMILTON-JACOBI THEORY; 3.01. Canonical Transformations; 3.02. Hamilton's Principal Function and the Hamilton-Jacobi Equation; 3.03. Elementary Properties of Hamilton's Principal Function; 3.04. Field Properties of Hamilton's Principal Function in the Context of Forced Motion; 3.05. Hamilton's Principal Function and the Concept of Action; CHAPTER 4. WAVES; 4.01. Waves on a String under Tension; 4.02. Waves on a String under Tension and Local Restoring Force; 4.03. The Superposition of Waves.
  • 4.04. Extension to Three Dimensions Plane Waves; 4.05. Quasi-Plane Waves; the Short Wavelength Limit; CHAPTER 5. HISTORICAL BACKGROUND OF THE QUANTUM THEORY; 5.01. Isothermal Cavity Radiation; 5.02. Enumeration of Electromagnetic Modes; the Rayleigh-Jeans Result; 5.03. Planck's Quantum Hypothesis; 5.04. The Photoelectric Effect; 5.05. Bohr's Explanation of the Hydrogen Spectrum; 5.06. The Compton Effect; 5.07. The de Broglie Relations and the Davisson
  • Germer Experiment; CHAPTER 6. WAVE MECHANICS; 6.01. The Two Branches of Quantum Theory; 6.02. Waves and Wave Packets.
  • 6.03. The Schr�odinger Equation6.04. Interpretation of [psi]*[psi]; Normalization and Probability Current; 6.05. Expectation Values; CHAPTER 7. THE TIME-INDEPENDENT SCHR�ODINGER EQUATION AND SOME OF ITS APPLICATIONS; 7.01. Time-independent Potential Energy Functions and Stationary Quantum States; 7.02. The Rectangular Step; Transmission and Reflection; 7.03. The Rectangular Barrier and Tunneling; 7.04. Stationary States of the Infinite Rectangular Well; 7.05. Stationary States of the Finite Rectangular Well; Bound States and Continuum States; 7.06. The Particle in a Box.
  • 7.07. The One-dimensional Harmonic OscillatorCHAPTER 8. OPERATORS, OBSERVABLES, AND THE QUANTIZATION OF A PHYSICAL SYSTEM; 8.01. General Definition of Operators; Linear Operators; 8.02. The Non-commutative Algebra of Operators; 8.03. Eigenfunctions and Eigenvalues; the Operators for Momentum and Position; 8.04. The Association of an Operator with an Observable and the Calculation of Expectation Values; 8.05. The Hamiltonian Operator and the Generalized Derivation of the Schr�odinger Equation; 8.06. Hermitian Operators and Expansion in Eigenfunctions.