Cargando…

Optimization techniques in statistics /

Statistics help guide us to optimal decisions under uncertainty. A large variety of statistical problems are essentially solutions to optimization problems. The mathematical techniques of optimization are fundamentalto statistical theory and practice. In this book, Jagdish Rustagi provides full-spec...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rustagi, Jagdish S.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston : Academic Press, �1994.
Colección:Statistical modeling and decision science.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn679038957
003 OCoLC
005 20231117044451.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 101106s1994 maua ob 001 0 eng d
010 |z  94002016  
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCF  |d OCLCO  |d OPELS  |d N$T  |d YDXCP  |d DEBSZ  |d COO  |d OCLCQ  |d YDX  |d OCLCO  |d OCLCA  |d LUN  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d UKAHL  |d VLY  |d INARC  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCO 
019 |a 622262711  |a 972241526  |a 1100922970  |a 1150977556  |a 1287177581  |a 1397714847 
020 |a 0126045550  |q (electronic bk.) 
020 |a 9780126045550  |q (electronic bk.) 
020 |a 9781483295718  |q (electronic bk.) 
020 |a 1483295710  |q (electronic bk.) 
035 |a (OCoLC)679038957  |z (OCoLC)622262711  |z (OCoLC)972241526  |z (OCoLC)1100922970  |z (OCoLC)1150977556  |z (OCoLC)1287177581  |z (OCoLC)1397714847 
042 |a dlr 
050 4 |a QA402.5  |b .R877 1994 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.3  |2 20 
084 |a 31.35  |2 bcl 
084 |a QH 420  |2 rvk 
084 |a SK 870  |2 rvk 
100 1 |a Rustagi, Jagdish S. 
245 1 0 |a Optimization techniques in statistics /  |c Jagdish S. Rustagi. 
260 |a Boston :  |b Academic Press,  |c �1994. 
300 |a 1 online resource (xii, 359 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Statistical modeling and decision science 
504 |a Includes bibliographical references (pages 325-341) and indexes. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
520 |a Statistics help guide us to optimal decisions under uncertainty. A large variety of statistical problems are essentially solutions to optimization problems. The mathematical techniques of optimization are fundamentalto statistical theory and practice. In this book, Jagdish Rustagi provides full-spectrum coverage of these methods, ranging from classical optimization and Lagrange multipliers, to numerical techniques using gradients or direct search, to linear, nonlinear, and dynamic programming using the Kuhn-Tucker conditions or the Pontryagin maximal principle. Variational methods and optimization in function spaces are also discussed, as are stochastic optimization in simulation, including annealing methods. 
505 0 |a Front Cover; Optimization Techniques in Statistics; Copyright Page; Table of Contents; Preface; Acknowledgments; Chapter 1. Synopsis; 1.1 Introduction; 1.2 Classical Optimization Techniques; 1.3 Optimization and Inequalities; 1.4 Numerical Methods of Optimization; 1.5 Linear Programming Techniques; 1.6 Nonlinear Programming Techniques; 1.7 Dynamic Programming Methods; 1.8 Variational Methods; 1.9 Stochastic Approximation Procedures; 1.10 Optimization in Simulation; 1.11 Optimization in Function Spaces; Chapter 2. Classical Optimization Techniques; 2.1 Introduction; 2.2 Preliminaries 
505 8 |a 2.3 Necessary and Sufficient Conditions for an Extremum2.4 Constrained Optimization-Lagrange Multipliers; 2.5 Statistical Applications; 2.6 Exercises; Chapter 3. Optimization and Inequalities; 3.1 Introduction; 3.2 Classical Inequalities; 3.3 Matrix Inequalities; 3.4 Applications; Chapter 4. Numerical Methods of Optimization; 4.1 Introduction; 4.2 Numerical Evaluation of Roots of Equations; 4.3 Direct Search Methods; 4.4 Gradient Methods; 4.5 Convergence of Numerical Procedures; 4.6 Nonlinear Regression and Other Statistical Algorithms; 4.7 Exercises; Chapter 5. Linear Programming Techniques 
505 8 |a 5.1 Introduction5.2 Linear Programming Problem; 5.3 Standard Form of the Linear Programming Problem; 5.4 Simplex Method; 5.5 Karmarkar's Algorithm; 5.6 Zero-Sum Two-Person Finite Games and Linear Programming; 5.7 Integer Programming; 5.8 Statistical Applications; 5.9 Exercises; Chapter 6. Nonlinear Programming Methods; 6.1 Introduction; 6.2 Statistical Examples; 6.3 Kuhn-Tucker Conditions; 6.4 Quadratic Programming; 6.5 Convex Programming; 6.6 Applications; 6.7 Statistical Control of Optimization; 6.8 Stochastic Programming; 6.9 Geometric Programming; 6.10 Exercises 
505 8 |a Chapter 7. Dynamic Programming Methods7.1 Introduction; 7.2 Regulation and Control; 7.3 Functional Equation and Principles of Optimality; 7.4 Dynamic Programming and Approximation; 7.5 Patient Care through Dynamic Programming; 7.6 Pontryagin Maximum Principle; 7.7 Miscellaneous Applications; 7.8 Exercises; Chapter 8. Variational Methods; 8.1 Introduction; 8.2 Statistical Applications; 8.3 Euler-Lagrange Equations; 8.4 Neyman-Pearson Technique; 8.5 Robust Statistics and Variational Methods; 8.6 Penalized Maximum Likelihood Estimates; 8.7 Exercises 
505 8 |a Chapter 9. Stochastic Approximation Procedures9.1 Introduction; 9.2 Robbins-Monro Procedure; 9.3 General Case; 9.4 Kiefer-Wolfowitz Procedure; 9.5 Applications; 9.6 Stochastic Approximation and Filtering; 9.7 Exercises; Chapter 10. Optimization in Simulation; 10.1 Introduction; 10.2 Optimization Criteria; 10.3 Optimality of Regression Experiments; 10.4 Response Surface Methods; 10.5 Miscellaneous Stochastic Methods; 10.6 Application; Chapter 11. Optimization in Function Spaces; 11.1 Introduction; 11.2 Preliminaries; 11.3 Optimization Results; 11.4 Splines in Statistics; 11.5 Exercises 
546 |a English. 
650 0 |a Mathematical optimization. 
650 0 |a Mathematical statistics. 
650 0 |a Programming (Mathematics) 
650 6 |a Optimisation math�ematique.  |0 (CaQQLa)201-0007680 
650 6 |a Programmation (Math�ematiques)  |0 (CaQQLa)201-0001238 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Mathematical optimization  |2 fast  |0 (OCoLC)fst01012099 
650 7 |a Mathematical statistics  |2 fast  |0 (OCoLC)fst01012127 
650 7 |a Programming (Mathematics)  |2 fast  |0 (OCoLC)fst01078701 
650 7 |a Optimierung  |2 gnd  |0 (DE-588)4043664-0 
650 7 |a Statistik  |2 gnd  |0 (DE-588)4056995-0 
650 1 7 |a Optimaliseren.  |2 gtt 
650 7 |a Statistique math�ematique.  |2 ram 
776 0 8 |i Print version:  |a Rustagi, Jagdish S.  |t Optimization techniques in statistics.  |d Boston : Academic Press, �1994  |w (DLC) 94002016  |w (OCoLC)29668045 
830 0 |a Statistical modeling and decision science. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780126045550  |z Texto completo