|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_ocn679038957 |
003 |
OCoLC |
005 |
20231117044451.0 |
006 |
m o d |
007 |
cr bn||||||abp |
007 |
cr bn||||||ada |
008 |
101106s1994 maua ob 001 0 eng d |
010 |
|
|
|z 94002016
|
040 |
|
|
|a OCLCE
|b eng
|e pn
|c OCLCE
|d OCLCQ
|d OCLCF
|d OCLCO
|d OPELS
|d N$T
|d YDXCP
|d DEBSZ
|d COO
|d OCLCQ
|d YDX
|d OCLCO
|d OCLCA
|d LUN
|d S2H
|d OCLCO
|d OCLCQ
|d OCLCO
|d UKAHL
|d VLY
|d INARC
|d OCLCO
|d OCLCQ
|d SFB
|d OCLCO
|
019 |
|
|
|a 622262711
|a 972241526
|a 1100922970
|a 1150977556
|a 1287177581
|a 1397714847
|
020 |
|
|
|a 0126045550
|q (electronic bk.)
|
020 |
|
|
|a 9780126045550
|q (electronic bk.)
|
020 |
|
|
|a 9781483295718
|q (electronic bk.)
|
020 |
|
|
|a 1483295710
|q (electronic bk.)
|
035 |
|
|
|a (OCoLC)679038957
|z (OCoLC)622262711
|z (OCoLC)972241526
|z (OCoLC)1100922970
|z (OCoLC)1150977556
|z (OCoLC)1287177581
|z (OCoLC)1397714847
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA402.5
|b .R877 1994
|
072 |
|
7 |
|a MAT
|x 003000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 029000
|2 bisacsh
|
082 |
0 |
4 |
|a 519.3
|2 20
|
084 |
|
|
|a 31.35
|2 bcl
|
084 |
|
|
|a QH 420
|2 rvk
|
084 |
|
|
|a SK 870
|2 rvk
|
100 |
1 |
|
|a Rustagi, Jagdish S.
|
245 |
1 |
0 |
|a Optimization techniques in statistics /
|c Jagdish S. Rustagi.
|
260 |
|
|
|a Boston :
|b Academic Press,
|c �1994.
|
300 |
|
|
|a 1 online resource (xii, 359 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Statistical modeling and decision science
|
504 |
|
|
|a Includes bibliographical references (pages 325-341) and indexes.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2010.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2010
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Statistics help guide us to optimal decisions under uncertainty. A large variety of statistical problems are essentially solutions to optimization problems. The mathematical techniques of optimization are fundamentalto statistical theory and practice. In this book, Jagdish Rustagi provides full-spectrum coverage of these methods, ranging from classical optimization and Lagrange multipliers, to numerical techniques using gradients or direct search, to linear, nonlinear, and dynamic programming using the Kuhn-Tucker conditions or the Pontryagin maximal principle. Variational methods and optimization in function spaces are also discussed, as are stochastic optimization in simulation, including annealing methods.
|
505 |
0 |
|
|a Front Cover; Optimization Techniques in Statistics; Copyright Page; Table of Contents; Preface; Acknowledgments; Chapter 1. Synopsis; 1.1 Introduction; 1.2 Classical Optimization Techniques; 1.3 Optimization and Inequalities; 1.4 Numerical Methods of Optimization; 1.5 Linear Programming Techniques; 1.6 Nonlinear Programming Techniques; 1.7 Dynamic Programming Methods; 1.8 Variational Methods; 1.9 Stochastic Approximation Procedures; 1.10 Optimization in Simulation; 1.11 Optimization in Function Spaces; Chapter 2. Classical Optimization Techniques; 2.1 Introduction; 2.2 Preliminaries
|
505 |
8 |
|
|a 2.3 Necessary and Sufficient Conditions for an Extremum2.4 Constrained Optimization-Lagrange Multipliers; 2.5 Statistical Applications; 2.6 Exercises; Chapter 3. Optimization and Inequalities; 3.1 Introduction; 3.2 Classical Inequalities; 3.3 Matrix Inequalities; 3.4 Applications; Chapter 4. Numerical Methods of Optimization; 4.1 Introduction; 4.2 Numerical Evaluation of Roots of Equations; 4.3 Direct Search Methods; 4.4 Gradient Methods; 4.5 Convergence of Numerical Procedures; 4.6 Nonlinear Regression and Other Statistical Algorithms; 4.7 Exercises; Chapter 5. Linear Programming Techniques
|
505 |
8 |
|
|a 5.1 Introduction5.2 Linear Programming Problem; 5.3 Standard Form of the Linear Programming Problem; 5.4 Simplex Method; 5.5 Karmarkar's Algorithm; 5.6 Zero-Sum Two-Person Finite Games and Linear Programming; 5.7 Integer Programming; 5.8 Statistical Applications; 5.9 Exercises; Chapter 6. Nonlinear Programming Methods; 6.1 Introduction; 6.2 Statistical Examples; 6.3 Kuhn-Tucker Conditions; 6.4 Quadratic Programming; 6.5 Convex Programming; 6.6 Applications; 6.7 Statistical Control of Optimization; 6.8 Stochastic Programming; 6.9 Geometric Programming; 6.10 Exercises
|
505 |
8 |
|
|a Chapter 7. Dynamic Programming Methods7.1 Introduction; 7.2 Regulation and Control; 7.3 Functional Equation and Principles of Optimality; 7.4 Dynamic Programming and Approximation; 7.5 Patient Care through Dynamic Programming; 7.6 Pontryagin Maximum Principle; 7.7 Miscellaneous Applications; 7.8 Exercises; Chapter 8. Variational Methods; 8.1 Introduction; 8.2 Statistical Applications; 8.3 Euler-Lagrange Equations; 8.4 Neyman-Pearson Technique; 8.5 Robust Statistics and Variational Methods; 8.6 Penalized Maximum Likelihood Estimates; 8.7 Exercises
|
505 |
8 |
|
|a Chapter 9. Stochastic Approximation Procedures9.1 Introduction; 9.2 Robbins-Monro Procedure; 9.3 General Case; 9.4 Kiefer-Wolfowitz Procedure; 9.5 Applications; 9.6 Stochastic Approximation and Filtering; 9.7 Exercises; Chapter 10. Optimization in Simulation; 10.1 Introduction; 10.2 Optimization Criteria; 10.3 Optimality of Regression Experiments; 10.4 Response Surface Methods; 10.5 Miscellaneous Stochastic Methods; 10.6 Application; Chapter 11. Optimization in Function Spaces; 11.1 Introduction; 11.2 Preliminaries; 11.3 Optimization Results; 11.4 Splines in Statistics; 11.5 Exercises
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Mathematical optimization.
|
650 |
|
0 |
|a Mathematical statistics.
|
650 |
|
0 |
|a Programming (Mathematics)
|
650 |
|
6 |
|a Optimisation math�ematique.
|0 (CaQQLa)201-0007680
|
650 |
|
6 |
|a Programmation (Math�ematiques)
|0 (CaQQLa)201-0001238
|
650 |
|
7 |
|a MATHEMATICS
|x Applied.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Probability & Statistics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Mathematical optimization
|2 fast
|0 (OCoLC)fst01012099
|
650 |
|
7 |
|a Mathematical statistics
|2 fast
|0 (OCoLC)fst01012127
|
650 |
|
7 |
|a Programming (Mathematics)
|2 fast
|0 (OCoLC)fst01078701
|
650 |
|
7 |
|a Optimierung
|2 gnd
|0 (DE-588)4043664-0
|
650 |
|
7 |
|a Statistik
|2 gnd
|0 (DE-588)4056995-0
|
650 |
1 |
7 |
|a Optimaliseren.
|2 gtt
|
650 |
|
7 |
|a Statistique math�ematique.
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Rustagi, Jagdish S.
|t Optimization techniques in statistics.
|d Boston : Academic Press, �1994
|w (DLC) 94002016
|w (OCoLC)29668045
|
830 |
|
0 |
|a Statistical modeling and decision science.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780126045550
|z Texto completo
|