Cargando…

Handbook of heterocyclic chemistry.

Heterocyclic compounds play a vital role in the metabolism of living cells. Their practical applications range from extensive clinical use to fields as diverse as agriculture, photography, biocide formulation and polymer science. Written by leading scholars and industry experts, the Handbook of Hete...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Katritzky, Alan R.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Elsevier, �2010.
Edición:3rd ed. /
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Contents note continued: 3.5.2. Thermal and Photochemical Reactions, Not Formally Involving Other Species
  • 3.5.2.1. Fragmentation Reactions
  • 3.5.2.2. Rearrangements
  • 3.5.3. Electrophilic Attack on Ring Heteroatoms
  • 3.5.3.1. Protonation
  • 3.5.3.2. Complex Formation
  • 3.5.3.3. Alkylation, Arylation, and Acylation
  • 3.5.4. Nucleophilic Attack on Ring Heteroatoms
  • 3.5.5. Nucleophilic Attack on Ring Carbon Atoms
  • 3.5.5.1. Reactions of Three-Membered Rings
  • 3.5.5.2. Reactions of Four-Membered Rings
  • 3.5.5.3. Reactions of Carbonyl Derivatives of Four-Membered Rings
  • 3.5.5.4. Large Rings
  • 3.5.6. Base Attack on Protons Attached to Ring Atoms
  • 3.5.7. Attack by Radicals or Electron-Deficient Species. Oxidation and Reduction
  • 3.5.7.1. Reactions with Radicals and Carbenes
  • 3.5.7.2. Oxidation
  • 3.5.7.3. Reduction
  • 3.5.8. Reactions with Cyclic Transition States
  • 3.5.8.1. [2+4] Cycloadditions
  • 3.5.8.1.1. Heterocycles as dienophiles
  • 3.5.8.1.2. Heterocycles as dienes
  • 3.5.8.2. 1,3-Dipolar Cycloadditions
  • 3.5.9. Reactivity of Transition Metal Complexes
  • 3.5.10. Reactivity of Substituents Attached to Heteroatom or Ring Carbon Atoms
  • 3.5.10.1. C-Linked Substituents
  • 3.5.10.2. N- and S-Linked Substituents
  • 4. Synthesis of Heterocycles
  • 4.1. Overview
  • 4.1.1. Aims and Organization
  • 4.1.2. Ring Formation from Two Components
  • 4.1.2.1. By Reaction between Electrophilic and Nucleophilic Centers
  • 4.1.2.2. Ring Formation via Cycloaddition
  • 4.1.2.2.1. [2+2] Cycloadditions
  • 4.1.2.2.2. 1,3-Dipolar cycloadditions
  • 4.1.3. Ring Closure of a Single Component
  • 4.1.3.1. By Reaction between Electrophilic and Nucleophilic Centers
  • 4.1.3.2. Electrocyclic Reactions
  • 4.1.3.3. By Radical, Carbene, or Nitrene Intermediates
  • 4.1.3.4. By Intramolecular Cyclodditions
  • 4.1.4. Modification of an Exiting Ring
  • 4.1.4.1. Ring Atom Interchange
  • 4.1.4.2. Incorporation of New Ring Atoms: No Change in Ring Size
  • 4.1.4.3. Ring Expansions
  • 4.1.4.4. Ring Contractions
  • 4.1.4.5. Ring Closure with Simultaneous Ring Opening
  • 4.2. Synthesis of Monocyclic Rings with One Heteroatom
  • 4.2.1. Ring Containing No Endocyclic Double Bonds
  • 4.2.1.1. From Acyclic Compounds by Concerted Formation of Two Bonds
  • 4.2.1.1.1. Three-membered rings
  • 4.2.1.1.2. Four-membered rings
  • 4.2.1.1.3. Five-membered rings
  • 4.2.1.2. From Acyclic Compounds by Formation of One or Two C-Z Bonds
  • 4.2.1.2.1. Three-membered rings
  • 4.2.1.2.2. Four-membered rings
  • 4.2.1.2.3. Five-membered rings
  • 4.2.1.2.4. Six-membered rings
  • 4.2.1.2.5. Larger rings
  • 4.2.1.3. From Acyclic Compounds by Formation of One C-C Bond
  • 4.2.1.4. From Carbocyclic Compounds
  • 4.2.1.5. From Other Heterocyclic Compounds
  • 4.2.1.5.1. Reactions involving ring expansion
  • 4.2.1.5.2. Reactions without change in ring size
  • 4.2.1.5.3. Ring contraction
  • 4.2.2. Rings Containing One Endocyclic Double Bond
  • 4.2.2.1. From Acyclic Compounds by Concerted Formation of Two Bonds
  • 4.2.2.2. From Acyclic Compounds by Formation of One or Consecutive Formation of Two C-Z Bond (s)
  • 4.2.2.2.1. Z Atom component acting as nucleophile
  • 4.2.2.2.2. Z Atom component acting as electrophile
  • 4.2.2.3. From Acyclic Compounds by Ring-Closing Metathesis
  • 4.2.2.4. From Carbocycles
  • 4.2.2.5. From Heterocycles
  • 4.2.3. Rings Containing Two Endocyclic Double Bonds
  • 4.2.3.1. Overview
  • 4.2.3.2. Synthesis of Pyrroles, Furans, and Thiophenes by Substituent Introduction or Modification
  • 4.2.3.3. Synthesis of Pyrroles, Furans, and Thiophenes from Acyclic Precursors
  • 4.2.3.3.1. From C4Z or C4 units
  • 4.2.3.3.2. From C3ZC or C3 and CZ units
  • 4.2.3.3.3. From C2 and ZCC units
  • 4.2.3.3.4. From C2 and CZC units
  • 4.2.3.3.5. From two C2 and Z units
  • 4.2.3.4. Synthesis of Pyrans, Dihydropyridines, and their Thio and Oxo Derivatives from Acyclic Precusors
  • 4.2.3.4.1. From C5 units
  • 4.2.3.4.2. With C-C bond formation
  • 4.2.3.5. Synthesis of Four-, Five-, and Six-Membered Rings from Carbocyclic or Heterocyclic Precursors
  • 4.2.3.5.1. With ring expansion
  • 4.2.3.5.2. No change in ring size
  • 4.2.3.5.3. With ring contraction
  • 4.2.3.6. Synthesis of Seven-and Eight-Membered Rings
  • 4.2.4. Rings Containing Three Endocyclic Double Bonds
  • 4.2.4.1. Synthetic Methods for Substituted Pyridines
  • 4.2.4.2. Synthesis of Six-Membered Rings from Acyclic Compounds
  • 4.2.4.2.1. From or via pentane-1,5-diones
  • 4.2.4.2.2. From pent-2-ene-1,5-diones
  • 4.2.4.2.3. Other Methods
  • 4.2.4.3. Synthesis of Six-Membered Rings from Other Heterocycles
  • 4.2.4.3.1. From five-membered rings
  • 4.2.4.3.2. From other six-membered rings
  • 4.2.4.4. Synthesis of Seven-Membered and Larger Rings
  • 4.3. Synthesis of Monocyclic Rings with Two or More Heteroatoms
  • 4.3.1. Substituent Introduction and Modification
  • 4.3.1.1. Overview
  • 4.3.1.2. Substituents Introduction and Modification in Azoles
  • 4.3.1.3. Substituents Introduction and Modification in Azines
  • 4.3.2. Two Heteroatoms in the 1,2-Positions
  • 4.3.2.1. Three-membered Rings
  • 4.3.2.2. Four-membered Rings
  • 4.3.2.2.1. 1,2-Diazetidines
  • 4.3.2.2.2. 1,2-Oxazetidines
  • 4.3.2.2.3. 1,2-Thiazetidines
  • 4.3.2.2.4. 1,2-Dioxetanes
  • 4.3.2.2.5. 1,2-Oxathietanes
  • 4.3.2.2.6. 1,2-Dithietanes
  • 4.3.2.3. Five-membered Rings: Pyrazoles, Isoxazoles, Isothiazoles, etc.
  • 4.3.2.3.1. Synthesis from hydrazine, hydroxylamine, and hydrogen disulfide derivatives
  • 4.3.2.3.2. Synthesis by Z-Z bond formation
  • 4.3.2.3.3. Other methods from acyclic precursors
  • 4.3.2.3.4. From other heterocycles
  • 4.3.2.4. Six-membered Rings: Pyridazines, 1,2-Oxazines, etc.
  • 4.3.2.4.1. Synthesis from hydrazine or hydroxylamine derivatives
  • 4.3.2.4.2. By cycloaddition reactions
  • 4.3.5.2.2. Other methods
  • 4.3.5.3. Six-membered Rings
  • 4.3.6. Three Heteroatoms in the 1,2,4-Positions
  • 4.3.6.1. Five-membered Rings
  • 4.3.6.1.1. From acyclic intermediates containing the preformed Z-Z' bond
  • 4.3.6.1.2. From acyclic intermediates by formation of the Z-Z' bond
  • 4.3.6.1.3. From heterocyclic precursors
  • 4.3.6.1.4. By the 'monocyclic rearrangement'
  • 4.3.6.2. Six-membered Rings
  • 4.3.6.2.1. 1,2,4-Triazines
  • 4.3.6.2.2. Rings containing O or S atoms
  • 4.3.6.3. Seven-membered Rings
  • 4.3.6.3.1. Heteroatoms in the 1,2,4-positions
  • 4.3.6.3.2. Seven-membered rings with heteroatoms in the 1,2,5-positions
  • 4.3.7. Three Heteroatoms in the 1,3,5-Positions
  • 4.3.7.1. s-Triazines
  • 4.3.7.2. Compounds Containing O or S Atoms
  • 4.3.7.3. Synthesis from Heterocyclic Precursors
  • 4.3.7.4. Seven-membered Rings
  • 4.3.8. Four or More Heteroatoms
  • 4.3.8.1. Five-membered Rings
  • 4.3.8.2. Six-membered Rings
  • 4.4. Synthesis of Bicyclic Ring Systems Without Ring Junction Heteroatoms
  • 4.4.1. Synthesis by Substituent Introduction and Modification
  • 4.4.1.1. In the Heterocyclic Ring
  • 4.4.1.2. In the Benzene Ring
  • 4.4.2. One Heteroatom Adjacent to a Ring Junction
  • 4.4.2.1. Three-and Four Membered Rings
  • 4.4.2.1.1. Three -membered rings
  • 4.4.2.1.2. Four-membered rings
  • 4.4.2.2. Five-Membered Rings
  • 4.4.2.2.1. Survey of Syntheses for indoles, benzofurans, and benzothiophenes
  • 4.4.2.2.2. Ring closure by formation of Z-C(2) bond
  • 4.4.2.2.3. Ring closure by formation of ring -C bond
  • 4.4.2.2.4. Ring closure by formation of C(2)-C(3) bond
  • 4.4.2.2.5. Ring closure by formation of ring-Z bond
  • 4.4.2.2.6. From other heterocycles
  • 4.4.2.3. Six-Membered Rings
  • 4.4.2.3.1. Survey of synthetic methods for quinolines, benzo[b]pyrans, and their derivatives
  • 4.4.2.3.2. Ring closure of o-substituted anilines or phenols
  • 4.4.2.3.3. Formation of a C-C bond by reaction of a multiple bond with a benzene ring
  • 4.4.2.3.4. Synthesis via cycloaddition reactions
  • 4.4.2.3.5. Synthesis from other heterocycles
  • 4.4.2.4. Seven-Membered and Larger Rings
  • 4.4.3. One Heteroatom Not Adjacent to a Ring Junction
  • 4.4.3.1. Five-Membered Rings: Isoindoles and Related Compounds
  • 4.4.3.2. Six-Membered Rings
  • 4.4.3.2.1. Overview of ring synthes, of isoquinolines, benzo[c]pyrans, and their derivatives
  • -- 4.4.3.2.2. Ring closure of an o-disubstituted benzene
  • 4.4.3.2.3. From a [beta]-phenethylamine
  • 4.4.3.2.4. From a benzylimine
  • 4.4.3.3. Seven-Membered and Larger Rings
  • 4.4.4. Two Heteroatoms 1,2 to a Ring Junction
  • 4.4.4.1. Four-Membered Rings
  • 4.4.4.2. Five-Membered Rings
  • 4.4.4.2.1. Indazoles
  • 4.4.4.2.2. Anthranils, benzisothiazoles, and saccharins
  • 4.4.4.3. Six-Membered Rings
  • 4.4.4.3.1. Cinnolines
  • 4.4.4.3.2. Rings containing O or S atoms
  • 4.4.4.4. Seven-Membered Rings
  • 4.4.5. Two Heteroatoms 1,3 to a Ring Junction
  • 4.4.5.1. Five-Membered Rings
  • 4.4.5.1.1. Ring closure of an o-disubstituted benzene or hetarene
  • 4.4.5.1.2. Other methods
  • 4.4.5.2. Six -Membered Rings
  • 4.4.5.2.1. Quinazolines and azinopyrimidines by cyclization procedures
  • 4.4.5.2.2. Rings containing O or S atoms
  • 4.4.5.2.3. From other heterocycles
  • 4.4.5.3. Seven-Membered Rings
  • 4.4.5.3.1. Seven-membered rings with heteroatoms 1,3 to a ring junction
  • 4.4.5.3.2. Seven-membered rings with heteroatoms 2,4 to a ring junction
  • 4.4.6. Two Heteroatoms 1,4 to a Ring Junction
  • 4.4.6.1. Quinoxalines and Azinopyrazines
  • 4.4.6.2. 1,4-Benzoxazines and 1,4-Benzothiazines
  • 4.4.6.3. Rings Containing Oxygen and/or Sulfur Atoms.
  • Structure of Heterocycles
  • Reactivity of Heterocycles
  • Synthesis of Heterocycles.