MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn663716150
003 OCoLC
005 20231117044444.0
006 m o d
007 cr un||||a|a||
008 100910s1988 ne a ob 001 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d UIU  |d OCLCO  |d OCLCQ  |d OCLCF  |d N$T  |d E7B  |d COO  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCQ  |d MERUC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 894791202  |a 899002113 
020 |a 9781483290140  |q (electronic bk.) 
020 |a 148329014X  |q (electronic bk.) 
020 |z 0444704949 
020 |z 9780444704948 
035 |a (OCoLC)663716150  |z (OCoLC)894791202  |z (OCoLC)899002113 
050 4 |a TA645  |b .B675 1988 
072 7 |a TEC  |x 009020  |2 bisacsh 
082 0 4 |a 624.1/7  |2 19 
084 |a 33.11  |2 bcl 
084 |a SK 870  |2 rvk 
084 |a SK 970  |2 rvk 
084 |a MAT 910f  |2 stub 
100 1 |a Brousse, Pierre. 
245 1 0 |a Optimization in mechanics :  |b problems and methods /  |c Pierre Brousse. 
260 |a Amsterdam ;  |a New York :  |b North-Holland ;  |a New York, N.Y., U.S.A. :  |b Elsevier Science [U.S. & Canadian distributor],  |c 1988. 
300 |a 1 online resource (xii, 279 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a North-Holland series in applied mathematics and mechanics ;  |v v. 34 
504 |a Includes bibliographical references (pages 257-272) and index. 
588 0 |a Print version record. 
505 0 |a Front Cover; Optimization in Mechanics: Problems and Methods; Copyright Page; Introduction; Table of Contents; Chapter 1. EXAMPLES; l.A Structures discretized by finite element techniques; 1.1 Structural analysis; 1.2 Optimization of discretized structures; 1.3 Objective function and constraints; 1.4 Statement of a general mass minimization problem; 1.5 Admissible regions. Restraint sets; 1.6 Example. A three bar framework; l.B Vibrating discrete structures. Vibrating beams. Rotating shafts; 1.7 Discrete structures; 1.8 Vibrations of beams; 1.9 Non-dimensional quantities; 1.10 Rotating shafts. 
505 8 |a 1.11 Relevant problemsl. C Plastic design of frames and plates. Mass and safety factor; 1.12 Frames; 1.13 Plates; l.D Tripod. Stability constraints ; 1.14 Presentation; 1.15 Reduction; 1.16 Solution; 1.17 An associated problem; l.E Conclusion; Chapter 2. BASIC MATHEMATICAL CONCEPTS WITH ILLUSTRATIONS TAKEN FROM ACTUAL STRUCTURES; 2.A Sets. Functions. Conditions for minima; 2.1 Space R -- 2.2 Infinite dimensional spaces; 2.3 Open sets. Closed sets; 2.4 Differentials; 2.5 Conditions for minima or maxima; 2.6 Minimization and maximization with equality constraints. Lagrange multipliers. 
505 8 |a 2.7 Euler theorems and Lagrange multipliers2.B Convexity; 2.8 Convex sets; 2.9 Structures subjected to several loadings; 2.10 Convex functions. Concave functions; 2.11 Minimization and maximization of convex or concave functions; 2.12 Generalizations of convexity and concavity; 2.13 Gradients and differentials of natural vibration frequencies; 2.14 Quasiconcavity and pseudoconcavity of the fundamental vibration frequencies in finite element theory; 2.15 Quasiconcavity and pseudoconcavity of the fundamental frequencies of vibrating sandwich continuous beams. 
505 8 |a Chapter 3. KUHN TUCKER THEOREM. DUALITY3.1 Introduction; 3.2 Farkas lemma; 3.3 Constraint qualification; 3.4 Kuhn Tucker theorem; 3.5 A converse of the Kuhn Tucker theorem; 3.6 Lagrangian. Saddle points; 3.7 Duality; 3.8 Solution to primal problem via dual problem; Chapter 4. ASSOCIATED PROBLEMS; 4.A Theorems; 4.1 Statements of the problem; 4.2 General theorems; 4.3 Use of equivalent problems; 4.4 Solving a problem when the solutions of an associated problem are known; 4.B Examples; 4.6 Problems associated with already solved problems. 
505 8 |a 4.7 Strength maximization and mass minimization of an elastic columnChapter 5. MATHEMATICAL PROGRAMMING NUMERICAL METHODS; 5.A. Unconstrained optimization; 5.1 Iterative methods; 5.2 Minimization on a given search line; 5.3 Relaxation method; 5.4 Descent directions; 5.5 Gradient methods; 5.6 Conjugate gradient methods; 5.7 Newton method. Quasi-Newton methods; 5.B. Constrained optimization; 5.8 Assumptions; 5.9 Reduction of a problem ^ t o a sequence of linear problems; 5.10 Gradient projection method; 5.11 Other projection methods; 5.12 Penalty methods. 
650 0 |a Structural analysis (Engineering) 
650 0 |a Structural design. 
650 0 |a Mathematical optimization. 
650 6 |a Th�eorie des constructions.  |0 (CaQQLa)201-0015598 
650 6 |a Constructions  |x Calcul.  |0 (CaQQLa)201-0034510 
650 6 |a Optimisation math�ematique.  |0 (CaQQLa)201-0007680 
650 7 |a structural analysis.  |2 aat  |0 (CStmoGRI)aat300056397 
650 7 |a TECHNOLOGY & ENGINEERING  |x Civil  |x General.  |2 bisacsh 
650 7 |a Mathematical optimization  |2 fast  |0 (OCoLC)fst01012099 
650 7 |a Structural analysis (Engineering)  |2 fast  |0 (OCoLC)fst01135602 
650 7 |a Structural design  |2 fast  |0 (OCoLC)fst01135628 
650 7 |a Strukturmechanik  |2 gnd  |0 (DE-588)4126904-4 
650 7 |a Optimierung  |2 gnd  |0 (DE-588)4043664-0 
650 7 |a Constructions, Th�eorie des.  |2 ram 
650 7 |a Constructions  |x Calcul.  |2 ram 
650 7 |a Optimisation math�ematique.  |2 ram 
776 0 8 |i Print version:  |a Brousse, Pierre.  |t Optimization in mechanics.  |d Amsterdam ; New York : North-Holland ; New York, N.Y., U.S.A. : Elsevier Science [U.S. & Canadian distributor], 1988  |w (DLC) 88022616  |w (OCoLC)18291270 
830 0 |a North-Holland series in applied mathematics and mechanics ;  |v v. 34. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444704948  |z Texto completo