|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_ocn663716150 |
003 |
OCoLC |
005 |
20231117044444.0 |
006 |
m o d |
007 |
cr un||||a|a|| |
008 |
100910s1988 ne a ob 001 0 eng d |
040 |
|
|
|a OCLCE
|b eng
|e pn
|c OCLCE
|d OCLCQ
|d UIU
|d OCLCO
|d OCLCQ
|d OCLCF
|d N$T
|d E7B
|d COO
|d YDXCP
|d EBLCP
|d DEBSZ
|d OCLCQ
|d MERUC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 894791202
|a 899002113
|
020 |
|
|
|a 9781483290140
|q (electronic bk.)
|
020 |
|
|
|a 148329014X
|q (electronic bk.)
|
020 |
|
|
|z 0444704949
|
020 |
|
|
|z 9780444704948
|
035 |
|
|
|a (OCoLC)663716150
|z (OCoLC)894791202
|z (OCoLC)899002113
|
050 |
|
4 |
|a TA645
|b .B675 1988
|
072 |
|
7 |
|a TEC
|x 009020
|2 bisacsh
|
082 |
0 |
4 |
|a 624.1/7
|2 19
|
084 |
|
|
|a 33.11
|2 bcl
|
084 |
|
|
|a SK 870
|2 rvk
|
084 |
|
|
|a SK 970
|2 rvk
|
084 |
|
|
|a MAT 910f
|2 stub
|
100 |
1 |
|
|a Brousse, Pierre.
|
245 |
1 |
0 |
|a Optimization in mechanics :
|b problems and methods /
|c Pierre Brousse.
|
260 |
|
|
|a Amsterdam ;
|a New York :
|b North-Holland ;
|a New York, N.Y., U.S.A. :
|b Elsevier Science [U.S. & Canadian distributor],
|c 1988.
|
300 |
|
|
|a 1 online resource (xii, 279 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a North-Holland series in applied mathematics and mechanics ;
|v v. 34
|
504 |
|
|
|a Includes bibliographical references (pages 257-272) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Optimization in Mechanics: Problems and Methods; Copyright Page; Introduction; Table of Contents; Chapter 1. EXAMPLES; l.A Structures discretized by finite element techniques; 1.1 Structural analysis; 1.2 Optimization of discretized structures; 1.3 Objective function and constraints; 1.4 Statement of a general mass minimization problem; 1.5 Admissible regions. Restraint sets; 1.6 Example. A three bar framework; l.B Vibrating discrete structures. Vibrating beams. Rotating shafts; 1.7 Discrete structures; 1.8 Vibrations of beams; 1.9 Non-dimensional quantities; 1.10 Rotating shafts.
|
505 |
8 |
|
|a 1.11 Relevant problemsl. C Plastic design of frames and plates. Mass and safety factor; 1.12 Frames; 1.13 Plates; l.D Tripod. Stability constraints ; 1.14 Presentation; 1.15 Reduction; 1.16 Solution; 1.17 An associated problem; l.E Conclusion; Chapter 2. BASIC MATHEMATICAL CONCEPTS WITH ILLUSTRATIONS TAKEN FROM ACTUAL STRUCTURES; 2.A Sets. Functions. Conditions for minima; 2.1 Space R -- 2.2 Infinite dimensional spaces; 2.3 Open sets. Closed sets; 2.4 Differentials; 2.5 Conditions for minima or maxima; 2.6 Minimization and maximization with equality constraints. Lagrange multipliers.
|
505 |
8 |
|
|a 2.7 Euler theorems and Lagrange multipliers2.B Convexity; 2.8 Convex sets; 2.9 Structures subjected to several loadings; 2.10 Convex functions. Concave functions; 2.11 Minimization and maximization of convex or concave functions; 2.12 Generalizations of convexity and concavity; 2.13 Gradients and differentials of natural vibration frequencies; 2.14 Quasiconcavity and pseudoconcavity of the fundamental vibration frequencies in finite element theory; 2.15 Quasiconcavity and pseudoconcavity of the fundamental frequencies of vibrating sandwich continuous beams.
|
505 |
8 |
|
|a Chapter 3. KUHN TUCKER THEOREM. DUALITY3.1 Introduction; 3.2 Farkas lemma; 3.3 Constraint qualification; 3.4 Kuhn Tucker theorem; 3.5 A converse of the Kuhn Tucker theorem; 3.6 Lagrangian. Saddle points; 3.7 Duality; 3.8 Solution to primal problem via dual problem; Chapter 4. ASSOCIATED PROBLEMS; 4.A Theorems; 4.1 Statements of the problem; 4.2 General theorems; 4.3 Use of equivalent problems; 4.4 Solving a problem when the solutions of an associated problem are known; 4.B Examples; 4.6 Problems associated with already solved problems.
|
505 |
8 |
|
|a 4.7 Strength maximization and mass minimization of an elastic columnChapter 5. MATHEMATICAL PROGRAMMING NUMERICAL METHODS; 5.A. Unconstrained optimization; 5.1 Iterative methods; 5.2 Minimization on a given search line; 5.3 Relaxation method; 5.4 Descent directions; 5.5 Gradient methods; 5.6 Conjugate gradient methods; 5.7 Newton method. Quasi-Newton methods; 5.B. Constrained optimization; 5.8 Assumptions; 5.9 Reduction of a problem ^ t o a sequence of linear problems; 5.10 Gradient projection method; 5.11 Other projection methods; 5.12 Penalty methods.
|
650 |
|
0 |
|a Structural analysis (Engineering)
|
650 |
|
0 |
|a Structural design.
|
650 |
|
0 |
|a Mathematical optimization.
|
650 |
|
6 |
|a Th�eorie des constructions.
|0 (CaQQLa)201-0015598
|
650 |
|
6 |
|a Constructions
|x Calcul.
|0 (CaQQLa)201-0034510
|
650 |
|
6 |
|a Optimisation math�ematique.
|0 (CaQQLa)201-0007680
|
650 |
|
7 |
|a structural analysis.
|2 aat
|0 (CStmoGRI)aat300056397
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Civil
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Mathematical optimization
|2 fast
|0 (OCoLC)fst01012099
|
650 |
|
7 |
|a Structural analysis (Engineering)
|2 fast
|0 (OCoLC)fst01135602
|
650 |
|
7 |
|a Structural design
|2 fast
|0 (OCoLC)fst01135628
|
650 |
|
7 |
|a Strukturmechanik
|2 gnd
|0 (DE-588)4126904-4
|
650 |
|
7 |
|a Optimierung
|2 gnd
|0 (DE-588)4043664-0
|
650 |
|
7 |
|a Constructions, Th�eorie des.
|2 ram
|
650 |
|
7 |
|a Constructions
|x Calcul.
|2 ram
|
650 |
|
7 |
|a Optimisation math�ematique.
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Brousse, Pierre.
|t Optimization in mechanics.
|d Amsterdam ; New York : North-Holland ; New York, N.Y., U.S.A. : Elsevier Science [U.S. & Canadian distributor], 1988
|w (DLC) 88022616
|w (OCoLC)18291270
|
830 |
|
0 |
|a North-Holland series in applied mathematics and mechanics ;
|v v. 34.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780444704948
|z Texto completo
|