Cargando…

Connectionist models : proceedings of the 1990 summer school /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: Connectionist Models Summer School
Otros Autores: Touretzky, David S.
Formato: Electrónico Congresos, conferencias eBook
Idioma:Inglés
Publicado: San Mateo, Calif. : M. Kaufmann Publishers, �1991.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn654840197
003 OCoLC
005 20231117044438.0
006 m o d
007 cr un||||a|a||
008 100809s1991 caua ob 101 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCF  |d OCLCO  |d OPELS  |d N$T  |d E7B  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCO  |d OCL  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d MERUC  |d OCLCQ  |d OCLCO  |d OCLCA  |d UKAHL  |d OCLCQ  |d VT2  |d OCLCA  |d VLY  |d OCLCQ  |d OCLCO  |d S2H  |d OCLCO  |d COM  |d OCLCO  |d OCLCQ 
019 |a 897646141  |a 961590433  |a 1156371687  |a 1162070318  |a 1175724204  |a 1202483866  |a 1202540849 
020 |a 9781483214481  |q (electronic bk.) 
020 |a 1483214486  |q (electronic bk.) 
020 |a 1322469962 
020 |a 9781322469966 
020 |z 1558601562 
020 |z 9781558601567 
035 |a (OCoLC)654840197  |z (OCoLC)897646141  |z (OCoLC)961590433  |z (OCoLC)1156371687  |z (OCoLC)1162070318  |z (OCoLC)1175724204  |z (OCoLC)1202483866  |z (OCoLC)1202540849 
050 4 |a QA76.5  |b .C61938 1991 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.3  |2 20 
245 0 0 |a Connectionist models :  |b proceedings of the 1990 summer school /  |c edited by David S. Touretzky [and others]. 
260 |a San Mateo, Calif. :  |b M. Kaufmann Publishers,  |c �1991. 
300 |a 1 online resource (xi, 404 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Front Cover; Connectionist Models; Copyright Page; Table of Contents; Foreword; Participants in the 1990 Connectionist Models Summer School; List Of Accepted Students; Part I: Mean Field, Boltzmann, and Hopfield Networks; Chapter 1. Deterministic Boltzmann Learning in Networks with Asymmetric Connectivity; Abstract; 1 INTRODUCTION; 2 DETERMINISTIC BOLTZMANN LEARNING IN SYMMETRIC NETWORKS; 3 ASYMMETRIC NETWORKS; 4 SIMULATION RESULTS; 5 DISCUSSION; Acknowledgement; References; APPENDIX; Chapter 2. Contrastive Hebbian Learning in the Continuous Hopfield Model; Abstract; 1 INTRODUCTION. 
505 8 |a 2 STABILITY OF ACTIVATIONS3 CONTRASTIVE LEARNING; 4 DISCUSSION; 5 APPENDIX; Acknowledgements; References; Chapter 3. Mean field networks that learn to discriminate temporally distorted strings; Abstract; INTRODUCTION; PREVIOUS APPROACHES USING NEURAL NETS; THE LEARNING PROCEDURE FOR THE MEAN FIELD MODULES; THE TASK USED IN THE SIMULATIONS; RESULTS AND DISCUSSION; Acknowledgements; References; Chapter 4. Energy Minimization and the Satisfiability of Propositional Logic; Abstract; 1 Introduction; 2 Satisfiability and models of propositional formulas; 3 Equivalence between WFFs. 
505 8 |a 4 Conversion of a WFF into Conjunction of Triples Form (CTF)5 Energy functions; 6 The equivalence between high order models and low order models; 7 Describing WFFs by energy functions; 8 The penalty function; 9 Mapping from a satisfiability problem to a minimization problem and vice versa; 10 Summary, applications and conclusions; Acknowledgments; References; Part II: Reinforcement Learning; Chapter 5. On the Computational Economics of Reinforcement Learning; Abstract; 1 INTRODUCTION; 2 INDIRECT AND DIRECT ADAPTIVE CONTROL; 3 MARKOV DECISION PROBLEMS. 
505 8 |a 4 INDIRECT AND DIRECT LEARNING FOR MARKOV DECISION PROBLEMS5 AN INDIRECT ALGORITHM; 6 Q-LEARNING; 7 SIMULATION RESULTS; 8 DISCUSSION; 9 CONCLUSION; Acknowledgements; References; Chapter 6. Reinforcement Comparison; Abstract; 1 INTRODUCTION; 2 THEORY; 3 RESULTS; 4 CONCLUSIONS; Acknowledgements; References; Chapter 7. Learning Algorithms for Networks with Internal and External Feedback; Abstract; 1 Terminology; 2 The Neural Bucket Brigade Algorithm; 3 A Reinforcement Comparison Algorithm for Continually Running Fully Recurrent Probabilistic Networks. 
505 8 |a 4 Two Interacting Fully Recurrent Self-Supervised Learning Networks for Reinforcement Learning5 An Example for Learning Dynamic Selective Attention: Adaptive Focus Trajectories for Attentive Vision; 6 An Adaptive Subgoal Generator for Planning Action Sequences; References; Part III: Genetic Learning; Chapter 8. Exploring Adaptive Agency I: Theory and Methods for Simulating the Evolution of Learning; Abstract; 1 INTRODUCTION; 2 NATURAL SELECTION AND THE EVOLUTION OF SUBSIDIARY ADAPTIVE PROCESSES; 3 A BRIEF HISTORY OF LEARNING THEORY IN (COMPARATIVE) PSYCHOLOGY. 
546 |a English. 
650 0 |a Connection machines  |v Congresses. 
650 0 |a Neural networks (Computer science)  |v Congresses. 
650 6 |a Connection Machine  |0 (CaQQLa)201-0234422  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 6 |a R�eseaux neuronaux (Informatique)  |0 (CaQQLa)201-0209597  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Connection machines.  |2 fast  |0 (OCoLC)fst00875334 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Neuronales Netz  |2 gnd  |0 (DE-588)4226127-2 
650 7 |a Konnektionismus  |2 gnd  |0 (DE-588)4265446-4 
650 7 |a Kongress  |2 gnd  |0 (DE-588)4130470-6 
655 2 |a Congress  |0 (DNLM)D016423 
655 7 |a Conference papers and proceedings.  |2 fast  |0 (OCoLC)fst01423772 
655 7 |a Conference papers and proceedings.  |2 lcgft 
655 7 |a Actes de congr�es.  |2 rvmgf  |0 (CaQQLa)RVMGF-000001049 
700 1 |a Touretzky, David S. 
711 2 |a Connectionist Models Summer School  |d (1990 :  |c University of California, San Diego) 
776 0 8 |i Print version:  |t Connectionist models.  |d San Mateo, Calif. : M. Kaufmann Publishers, �1991  |w (DLC) 90021144  |w (OCoLC)22625008 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781483214481  |z Texto completo