|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_ocn654474674 |
003 |
OCoLC |
005 |
20231117044434.0 |
006 |
m o d |
007 |
cr un||||a|a|| |
008 |
100810s1986 ne a ob 100 0 eng d |
040 |
|
|
|a OCLCE
|b eng
|e pn
|c OCLCE
|d OCLCQ
|d IDEBK
|d OPELS
|d E7B
|d OCLCQ
|d OCLCF
|d OCLCO
|d OCL
|d OCLCO
|d OCLCQ
|d LEAUB
|d VLY
|d LUN
|d INARC
|d S2H
|d OCLCO
|d OCLCQ
|d OCLCO
|d COM
|d OCLCO
|d OCLCQ
|d OCL
|d OCLCO
|
019 |
|
|
|a 1162562341
|a 1200562813
|a 1397687845
|
020 |
|
|
|a 1299282512
|
020 |
|
|
|a 9781299282513
|
020 |
|
|
|a 0444600221
|
020 |
|
|
|a 9780444600226
|
020 |
|
|
|z 0444879013
|q (U.S.)
|
020 |
|
|
|z 9780444879011
|q (U.S.)
|
035 |
|
|
|a (OCoLC)654474674
|z (OCoLC)1162562341
|z (OCoLC)1200562813
|z (OCoLC)1397687845
|
050 |
|
4 |
|a TA1632
|b .T44 1986
|
050 |
|
4 |
|a Q334
|b .T42 1986
|
082 |
0 |
4 |
|a 006.4
|2 19
|
084 |
|
|
|a 54.72
|2 bcl
|
084 |
|
|
|a SS 1983
|2 rvk
|
084 |
|
|
|a ST 282
|2 rvk
|
245 |
0 |
0 |
|a Techniques for 3-D machine perception /
|c edited by Azriel Rosenfeld.
|
260 |
|
|
|a Amsterdam ;
|a New York :
|b North-Holland ;
|a New York, N.Y., U.S.A. :
|b Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.,
|c 1986.
|
300 |
|
|
|a 1 online resource (viii, 320 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Machine intelligence and pattern recognition ;
|v v. 3
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Techniques for 3-D Machine Perception; Copyright Page; PREFACE; Table of Contents; CHAPTER 1. EXPERIMENTAL IMPLEMENTATION OF A RATIO IMAGE DEPTH SENSOR; I. Introduction; II. Principle of the Ratio Image Depth Sensor; III. The Experimental Implementation; IV. Analysis of Experimental Uncertainty; V. Representative Results; VI. Summary; References; CHAPTER 2. THE REPRESENTATION, RECOGNITION, AND POSITIONING OF 3-D SHAPES FROM RANGE DATA; 1. Introduction; 2. Representing 3-D shapes; 3. Recognition and positioning; 4. Conclusion; Acknowledgements; References
|
505 |
8 |
|
|a CHAPTER 3. STEREO VISION FOR THE ACQUISITION AND TRACKING OF MOVING THREE-DIMENSIONAL OBJECTS1. INTRODUCTION; 2. OVERVIEW OF ACQUISITION AND TRACKING; 3. APPROACH TO MOTION STEREO PROBLEM; 4. SCALE FACTOR AND BIAS; 5. MOTION STEREO SOLUTION; 6. COMPUTATION OF FEATURE POSITIONS AND UNCERTAINTIES; 7. EXAMPLE OF MOTION STEREO SOLUTION; ACKNOWLEDGMENTS; REFERENCES; CHAPTER 4. COMPUTING STEREOPSIS USING FEATURE POINT CONTOUR MATCHING; 1. Introduction; 2. The Marr-Poggio Stereo Model; 3. A Modified Marr-Poggio Stereo Matcher; 4. Examples; 5. Discussion; Acknowledgments; References
|
505 |
8 |
|
|a CHAPTER 5. MODEL-BASED RECOGNITION AND LOCALIZATION FROM SPARSE RANGE DATA1. The Problem and the Approach; 2. Generating Feasible Interpretations; 3. Model Testing; 4. Simulation Data; 5. Performance on Range Data; 6. Discussion; Acknowledgments; References; Appendix I; Appendix II; CHAPTER 6. REPRESENTATION AND INCREMENTAL CONSTRUCTION OF A THREE-DIMENSIONAL SCENE MODEL; 1. Introduction; 2. Description of System; 3. Representing and Manipulating the 3D Scene Model; 4. Modifications to the 3D Scene Model; 5. Constructing and Updating the 3D Scene Model; 6. Knowledge of Planar-Faced Objects
|
505 |
8 |
|
|a 7. Knowledge of Urban Scenes8. Combining New Views with Current Model; 9. Summary; Acknowledgement; References; CHAPTER 7. KNOWLEDGE-BASED STEREO AND STRUCTURED LIGHT FOR 3-D ROBOT VISION; 1. INTRODUCTION; 2. SYSTEM OVERVIEW OF THE KNOWLEDGE-BASED VISION SYSTEM; 3. OBJECT RECOGNITION; 4. STEREOSCOPIC POSITION DETERMINATION; 5. RANGE MAPPING BY STRUCTURED LIGHT; 6. INTERPRETATION OF STRUCTURED-LIGHT RANGE DATA; 8. BIBLIOGRAPHICAL NOTES; 9. REFERENCES; CHAPTER 8. MODEL BASED INTERPRETATION OF 3-D RANGE DATA; INTRODUCTION; OBJECT MODELING; MODEL PREDICTION; 3-D FEATURE EXTRACTION
|
505 |
8 |
|
|a FEATURE TO MODEL MATCHINGCONCLUSIONS; REFERENCES; CHAPTER 9. MULTIPLE RESOLUTION SEARCH TECHNIQUES FOR THE HOUGH TRANSFORM IN HIGH DIMENSIONAL PARAMETER SPACES; 1. Introduction; 2. The Standard Hough Transform; 3. Two New Methods: Recursive Lattice Search and Resolution Hill Climbing; 4. Gradient Information; 5. More Abstract Problems: Recognizing Symmetries; 6. Results; 7. Conclusion; References; Appendices; CHAPTER 10. THE USE OF NUMERICAL RELATIONAL DISTANCE AND SYMBOLIC DIFFERENCES FOR ORGANIZING MODELS AND FOR MATCHING; I. Introduction; II. Relational Models and Relational Distance
|
520 |
|
|
|a Techniques for 3-D Machine Perception.
|
650 |
|
0 |
|a Computer vision
|v Congresses.
|
650 |
|
0 |
|a Three-dimensional display systems
|v Congresses.
|
650 |
|
0 |
|a Artificial intelligence
|v Congresses.
|
650 |
|
0 |
|a Image processing
|v Congresses.
|
650 |
|
0 |
|a Depth perception
|x Congresses.
|
650 |
|
0 |
|a Pattern recognition systems
|v Congresses.
|
650 |
|
6 |
|a Intelligence artificielle
|0 (CaQQLa)201-0008626
|v Congr�es.
|0 (CaQQLa)201-0378219
|
650 |
|
6 |
|a Traitement d'images
|0 (CaQQLa)201-0029952
|v Congr�es.
|0 (CaQQLa)201-0378219
|
650 |
|
6 |
|a Perception de la profondeur
|0 (CaQQLa)201-0070816
|x Congr�es.
|0 (CaQQLa)201-0378208
|
650 |
|
6 |
|a Reconnaissance des formes (Informatique)
|0 (CaQQLa)201-0028094
|v Congr�es.
|0 (CaQQLa)201-0378219
|
650 |
|
6 |
|a Vision par ordinateur
|0 (CaQQLa)201-0074889
|v Congr�es.
|0 (CaQQLa)201-0378219
|
650 |
|
6 |
|a Affichage tridimensionnel
|0 (CaQQLa)201-0036051
|v Congr�es.
|0 (CaQQLa)201-0378219
|
650 |
|
7 |
|a Pattern recognition systems
|2 fast
|0 (OCoLC)fst01055266
|
650 |
|
7 |
|a Image processing
|2 fast
|0 (OCoLC)fst00967501
|
650 |
|
7 |
|a Depth perception
|2 fast
|0 (OCoLC)fst00890993
|
650 |
|
7 |
|a Artificial intelligence
|2 fast
|0 (OCoLC)fst00817247
|
650 |
|
7 |
|a Computer vision
|2 fast
|0 (OCoLC)fst00872687
|
650 |
|
7 |
|a Three-dimensional display systems
|2 fast
|0 (OCoLC)fst01150324
|
650 |
|
7 |
|a Computer
|2 gnd
|0 (DE-588)4070083-5
|
650 |
|
7 |
|a Kongress
|2 gnd
|0 (DE-588)4130470-6
|
650 |
|
7 |
|a R�aumliches Sehen
|2 gnd
|0 (DE-588)4057325-4
|
650 |
1 |
7 |
|a Kunstmatige intelligentie.
|2 gtt
|
650 |
1 |
7 |
|a Patroonherkenning.
|2 gtt
|
650 |
1 |
7 |
|a Driedimensionale afbeeldingen.
|2 gtt
|
653 |
|
|
|a Computer systems
|a Graphic displays
|a Three-dimensional images
|
655 |
|
2 |
|a Congress
|0 (DNLM)D016423
|
655 |
|
7 |
|a proceedings (reports)
|2 aat
|0 (CStmoGRI)aatgf300027316
|
655 |
|
7 |
|a Conference papers and proceedings
|2 fast
|0 (OCoLC)fst01423772
|
655 |
|
7 |
|a Conference papers and proceedings.
|2 lcgft
|
655 |
|
7 |
|a Actes de congr�es.
|2 rvmgf
|0 (CaQQLa)RVMGF-000001049
|
655 |
|
7 |
|a Kongress.
|2 swd
|
700 |
1 |
|
|a Rosenfeld, Azriel,
|d 1931-
|
711 |
2 |
|
|a Workshop on 3-D Machine Vision
|d (1983 :
|c Washington, D.C.)
|
711 |
2 |
|
|a National Conference on Artificial Intelligence
|d (1983 :
|c Washington, D.C.)
|
776 |
0 |
8 |
|i Print version:
|w (DLC) 85021736
|w (OCoLC)12663811
|
830 |
|
0 |
|a Machine intelligence and pattern recognition ;
|v v. 3.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780444879011
|z Texto completo
|