Cargando…

Mathematical methods in computer aided geometric design /

Mathematical Methods in Computer Aided Geometric Design.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Lyche, Tom, Schumaker, Larry L., 1939-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston : Academic Press, �1989.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Mathematical Methods in Computer Aided Geometric Design; Copyright Page; Table of Contents; PREFACE; PARTICIPANTS; Chapter 1. Scattered Data Interpolation in Three or More Variables; 1. Introduction; 2. Rendering of Trivariate Functions; 3. Tensor Product Schemes; 4. Point Schemes; 5. Natural Neighbor Interpolation; 6. k-dimensional Triangulations; 7. Tetrahedral Schemes; 8. Simplicial Schemes; 9. Multivariate Splines; 10. Transfinite Hypercubal Methods; 11. Derivative Generation; 12. Interpolation on the sphere and other surfaces; 13. Conclusions; Acknowledgments
  • Chapter 5. Three Examples of Dual Properties of B�ezier Curves1. Introduction; 2. Example 1. Degree Elevation and Differentiation; 3. Example 2. Transformations to and from Monomial Form; 4. Example 3. de Casteljau and Horner Evaluation; 5. Concluding Remarks; References; Chapter 6. What is the Natural Generalization of a B�ezier Curve?; 1. Introduction; 2. The Canonical Split; 3. B-Spline Properties; 4. P�olya Properties; 5. Shared Properties and Dual Properties; 6. Conclusions; References
  • Chapter 7. Convexity and a Multidimensional Version of the Variation Diminishing Property of Bernstein Polynomials1. Notation and Definitions; 2. Piecewise Linear Surface Over a Convex Polyhedron; 3. Variation Diminishing Property of Bernstein Polynomials; Acknowledgment; References; Chapter 8. Gr�obner Basis Methods for Multivariate Splines; 1. Dimensions of Spline Spaces; 2. Gr�obner Bases; 3. Computing Dimension Series and Bases of Splines; 4. Example and Discussion; References; Chapter 9. On Finite Element Interpolation Problems; 1. Introduction; 2. Interpolation Systems in IR
  • 3. Interpolation Problem Associated to an Interpolation System4. Argyris Triangle; 5. Construction of the Solution of the Interpolation Problem; 6. Basic Functions for the Argyris Triangle; References; Chapter 10. The Design of Curves and Surfaces by Subdivision Algorithms; 1. Introduction; 2. The Algorithms of de Casteljau and Chaikin; 3. De Rham's Construction of Certain Planar Curves; 4. Algorithms for Surfaces; 5. The Subdivision Algorithm for Bernstein-B�ezier Curves; 6. Subdivision Algorithms for Univariate Spline Functions; 7. Cube Splines and the Line Average Algorithm