|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_ocn652275488 |
003 |
OCoLC |
005 |
20231117044428.0 |
006 |
m o d |
007 |
cr un||||a|a|| |
008 |
100802s1989 mauaf ob 100 0 eng d |
040 |
|
|
|a OCLCE
|b eng
|e pn
|c OCLCE
|d OCLCQ
|d OCLCO
|d OCLCF
|d OPELS
|d E7B
|d OCL
|d OCLCO
|d YDXCP
|d OCLCQ
|d OCLCO
|d OCLCA
|d OCLCQ
|d AU@
|d OCLCA
|d INARC
|d UKAHL
|d VLY
|d LUN
|d OCLCQ
|d OCLCO
|d COM
|d OCLCO
|d OCLCQ
|d OCLCO
|
016 |
7 |
|
|a 000006417424
|2 AU
|
019 |
|
|
|a 1057947964
|a 1100933035
|
020 |
|
|
|a 9780124605152
|q (electronic bk.)
|
020 |
|
|
|a 012460515X
|q (electronic bk.)
|
020 |
|
|
|a 9781483257808
|q (e-book)
|
020 |
|
|
|a 1483257800
|
020 |
|
|
|z 0126330751
|
020 |
|
|
|z 9780126330755
|
035 |
|
|
|a (OCoLC)652275488
|z (OCoLC)1057947964
|z (OCoLC)1100933035
|
050 |
|
4 |
|a QA448.D38
|b M38 1989
|
082 |
0 |
4 |
|a 516/.15/0285
|2 20
|
084 |
|
|
|a QH 500
|2 rvk
|
084 |
|
|
|a SS 1988
|2 rvk
|
245 |
0 |
0 |
|a Mathematical methods in computer aided geometric design /
|c edited by Tom Lyche, Larry L. Schumaker.
|
260 |
|
|
|a Boston :
|b Academic Press,
|c �1989.
|
300 |
|
|
|a 1 online resource (xv, 611 pages, 4 unnumbered pages of plates) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Mathematical Methods in Computer Aided Geometric Design; Copyright Page; Table of Contents; PREFACE; PARTICIPANTS; Chapter 1. Scattered Data Interpolation in Three or More Variables; 1. Introduction; 2. Rendering of Trivariate Functions; 3. Tensor Product Schemes; 4. Point Schemes; 5. Natural Neighbor Interpolation; 6. k-dimensional Triangulations; 7. Tetrahedral Schemes; 8. Simplicial Schemes; 9. Multivariate Splines; 10. Transfinite Hypercubal Methods; 11. Derivative Generation; 12. Interpolation on the sphere and other surfaces; 13. Conclusions; Acknowledgments
|
505 |
8 |
|
|a Chapter 5. Three Examples of Dual Properties of B�ezier Curves1. Introduction; 2. Example 1. Degree Elevation and Differentiation; 3. Example 2. Transformations to and from Monomial Form; 4. Example 3. de Casteljau and Horner Evaluation; 5. Concluding Remarks; References; Chapter 6. What is the Natural Generalization of a B�ezier Curve?; 1. Introduction; 2. The Canonical Split; 3. B-Spline Properties; 4. P�olya Properties; 5. Shared Properties and Dual Properties; 6. Conclusions; References
|
505 |
8 |
|
|a Chapter 7. Convexity and a Multidimensional Version of the Variation Diminishing Property of Bernstein Polynomials1. Notation and Definitions; 2. Piecewise Linear Surface Over a Convex Polyhedron; 3. Variation Diminishing Property of Bernstein Polynomials; Acknowledgment; References; Chapter 8. Gr�obner Basis Methods for Multivariate Splines; 1. Dimensions of Spline Spaces; 2. Gr�obner Bases; 3. Computing Dimension Series and Bases of Splines; 4. Example and Discussion; References; Chapter 9. On Finite Element Interpolation Problems; 1. Introduction; 2. Interpolation Systems in IR
|
505 |
8 |
|
|a 3. Interpolation Problem Associated to an Interpolation System4. Argyris Triangle; 5. Construction of the Solution of the Interpolation Problem; 6. Basic Functions for the Argyris Triangle; References; Chapter 10. The Design of Curves and Surfaces by Subdivision Algorithms; 1. Introduction; 2. The Algorithms of de Casteljau and Chaikin; 3. De Rham's Construction of Certain Planar Curves; 4. Algorithms for Surfaces; 5. The Subdivision Algorithm for Bernstein-B�ezier Curves; 6. Subdivision Algorithms for Univariate Spline Functions; 7. Cube Splines and the Line Average Algorithm
|
520 |
|
|
|a Mathematical Methods in Computer Aided Geometric Design.
|
650 |
|
0 |
|a Geometry
|x Data processing
|v Congresses.
|
650 |
|
6 |
|a G�eom�etrie
|0 (CaQQLa)201-0254783
|x Informatique
|0 (CaQQLa)201-0254783
|v Congr�es.
|0 (CaQQLa)201-0378219
|
650 |
|
7 |
|a Geometry
|x Data processing
|2 fast
|0 (OCoLC)fst00940870
|
650 |
|
7 |
|a Algorithmische Geometrie
|2 gnd
|0 (DE-588)4130267-9
|
650 |
|
7 |
|a Computergrafik
|2 gnd
|0 (DE-588)4010450-3
|
650 |
|
7 |
|a Datenverarbeitung
|2 gnd
|0 (DE-588)4011152-0
|
650 |
|
7 |
|a Geometrische Modellierung
|2 gnd
|0 (DE-588)4156717-1
|
650 |
|
7 |
|a Kongress
|2 gnd
|0 (DE-588)4130470-6
|
650 |
|
7 |
|a Spline-Approximation
|2 gnd
|0 (DE-588)4182394-1
|
650 |
|
7 |
|a Mathematik
|2 gnd
|0 (DE-588)4037944-9
|
650 |
|
7 |
|a G�eom�etrie
|x Informatique
|x Congr�es.
|2 ram
|
653 |
0 |
|
|a Geometry
|a Use of
|a Computers
|
655 |
|
0 |
|a Oslo (1988)
|
655 |
|
2 |
|a Congress
|0 (DNLM)D016423
|
655 |
|
7 |
|a proceedings (reports)
|2 aat
|0 (CStmoGRI)aatgf300027316
|
655 |
|
7 |
|a Conference papers and proceedings
|2 fast
|0 (OCoLC)fst01423772
|
655 |
|
7 |
|a Conference papers and proceedings.
|2 lcgft
|
655 |
|
7 |
|a Actes de congr�es.
|2 rvmgf
|0 (CaQQLa)RVMGF-000001049
|
655 |
|
7 |
|a Oslo (1988)
|2 swd
|
700 |
1 |
|
|a Lyche, Tom.
|
700 |
1 |
|
|a Schumaker, Larry L.,
|d 1939-
|
776 |
0 |
8 |
|i Print version:
|t Mathematical methods in computer aided geometric design.
|d Boston : Academic Press, �1989
|w (DLC) 89032842
|w (OCoLC)19627320
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780124605152
|z Texto completo
|