Cargando…

Digital microscopy /

The previous edition of this book marked the shift in technology from video to digital camera use with microscope use in biological science. This new edition presents some of the optical fundamentals needed to provide a quality image to the digital camera. Specifically, it covers the fundamental geo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Sluder, Greenfield, Wolf, D. E.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Academic, 2007.
Edición:3rd ed.
Colección:Methods in cell biology ; v. 81.
Temas:
Acceso en línea:Texto completo
Texto completo
Tabla de Contenidos:
  • Cover
  • Contents
  • Contributors
  • Preface
  • Chapter 1: Microscope Basics
  • I. Introduction
  • II. How Microscopes Work
  • A. The Finite Tube-Length Microscope
  • B. Infinity Optics Microscopes
  • III. Objective Basics
  • A. Types of Objectives
  • B. "Mixing and Matching" Objectives
  • C. Coverslip Selection
  • IV. Mounting Video Cameras on the Microscope
  • A. Basic Considerations
  • B. Empty Magnification
  • C. Camera Pixel Number and Resolution
  • Reference
  • Chapter 2: The Optics of Microscope Image Formation
  • I. Introduction
  • II. Physical Optics: The Superposition of Waves
  • III. Huygens' Principle
  • IV. Young's Experiment: Two-Slit Interference
  • V. Diffraction from a Single Slit
  • VI. The Airy Disk and the Issue of Microscope Resolution
  • VII. Fourier or Reciprocal Space: The Concept of Spatial Frequencies
  • VIII. Resolution of the Microscope
  • IX. Resolution and Contrast
  • X. Conclusions
  • XI. Appendix I
  • A. Fourier Series
  • XII. Appendix II.
  • A. Kirchoff's Scalar Theory of Diffraction: Recasting Huygen's Principle in an Electrodynamic Context
  • B. Generalizing the Problem
  • C. Scalar Spherical Waves
  • D. Green's Theorem
  • E. Solution for a Plane
  • F. Huygens' Principle
  • XIII. Appendix III
  • A. Diffraction by a Circular Aperture from Which the Airy Disk Comes
  • Acknowledgments
  • References
  • Chapter 3: Proper Alignment of the Microscope
  • I. Key Components of Every Light Microscope
  • A. Light Source
  • B. Lamp Collector
  • C. Diffusers and Filters
  • D. Field Diaphragm
  • E. Condensers
  • F. Aperture Diaphragm
  • G. Condenser Carrier or Substage
  • H. The Specimen Stage
  • I. The Objective
  • J. Revolving Nosepiece
  • K. Infinity Space
  • L. Tube, Eyepiece, and Video Adapters
  • II. Koehler Illumination
  • A. Aligning the Microscope for Koehler Illumination
  • B. What Are the Benefits of Koehler Illumination?
  • C. Resolution and Contrast
  • Chapter 4: Mating Cameras to Microscopes
  • I. Introduction.
  • II. Optical Considerations
  • Chapter 5: Fundamentals of Fluorescence and Fluorescence Microscopy
  • I. Introduction
  • II. Light Absorption and Beer's Law
  • III. Atomic Fluorescence
  • IV. Organic Molecular Fluorescence
  • V. Excited State Lifetime and Fluorescence Quantum Efficiency
  • VI. Excited State Saturation
  • VII. Nonradiative Decay Mechanisms
  • VIII. Fluorescence Resonance Energy
  • IX. Fluorescence Depolarization
  • X. Measuring Fluorescence in the Steady State
  • XI. Construction of a Monochromator
  • XII. Construction of a Photomultiplier Tube
  • XIII. Measuring Fluorescence in the Time-Domain
  • A. Boxcar-Gated Detection Method
  • B. Streak Camera Method
  • C. Photon Correlation Method
  • D. Note on the Process of "Deconvolution"
  • E. Phase Modulation Method
  • XIV. Filters for the Selection of Wavelength
  • XV. The Fluorescence Microscope
  • XVI. The Power of.