Cargando…

Dynamics of the earth's evolution /

This sixth volume in the monograph series Physics and Evolution of the Earth's Interior presents the problems of the mature evolution of the Earth's interior. It provides comprehensive coverage of the present state of the mantle convection theory. The relations between paleomagnetism, plat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Teisseyre, R. (Roman), 1929-, Czechowski, L., Leliwa-Kopysty�nski, J., 1937-
Formato: Electrónico eBook
Idioma:Inglés
Polaco
Publicado: Amsterdam ; New York : Warszawa : Elsevier ; PWN--Polish Scientific Publishers, 1993.
Colección:Physics and evolution of the Earth's interior ; 6.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Dynamics of the Earth's Evolution; Copyright Page; Preface to the Series Physics and Evolution of the Earth's Interior; Table of Contents; Chapter 1. Plate Tectonics; 1.1 Introduction; 1.2 Fundamentals of plate tectonics; 1.3 Kinematics of lithospheric plates; 1.4 Oceanic ridges and spreading centres; References; Chapter 2. Paleomagnetic Clues to Plate Tectonics; 2.1 Introduction; 2.2 Continental drift and curves of apparent wandering of the pole; 2.3 Linear oceanic magnetic anomalies; 2.4 Hypothesis of an expanding Earth; References; Chapter 3. Mapping Mantle Convection
  • 3.1 Basic ideas3.2 Anisotropy of the mantle and the effects connected with it; 3.3 Problem of inversion for a three-dimensional structure; 3.4 Geoid anomalies and convection; 3.5 Results of seismic tomography; References; Chapter 4. Theoretical Approach to Mantle Convection; 4.1 Equations of convection; 4.2 Mathematical methods for mantle convection; 4.3 Geometrical aspects; 4.4 Effects of rheology and of other properties of the mantle's material; 4.5 Time-dependent convection and instabilities in the mantle; References; Chapter 5. The Evolving Earth and its Lithospheric Stresses
  • 5.1 Monitory mechanism of evolution5.2 Stress field due to the convection flow and the scalar representation theorem on the sphere; 5.3 Stresses in the lithosphere; 5.4 Lithospheric stresses and geoid anomalies; 5.5 Faults and stress distribution; 5.6 Thermal convection and surface features; 5.7 Geoid anomalies and low mantle convection; 5.8 Evolution and deep mass asymmetry; 5.9 Evolution of a local stress field: simulation of earthquakes and creep events; References; Chapter 6. Stresses in the Lithosphere Induced by the Earth's Rotation; 6.1 Introduction; 6.2 Gravito-elastic approach
  • 6.3 Two-dimensional approach6.4 Secular variation of the rotation vector. Planetological and geophysical applications; 6.5 General conclusions; Appendix A; Appendix B; References; Chapter 7. Thermodynamic Approach to Evolution; 7.1 Evolution of the Earth as a thermodynamic non-equilibrium process; 7.2 Difficulties involved in the transition from equilibrium to non-equilibrium thermodynamics; 7.3 Cosmological implications of thermodynamics; 7.4 Macroscopic aspects of the second law of thermodynamics; 7.5 Entropy production; 7.6 Local formulation of the second law of thermodynamics
  • 7.7 Linear relations between the flows and the forces7.8 The Onsager reciprocity relations; 7.9 Theorem of minimum entropy production; 7.10 Change in the entropy of a system in the course of an irreversible process; 7.11 Evolution of the Universe and the Earth; 7.12 Thermodynamic stability; 7.13 Synergetics; 7.14 The Prigogine-Glansdorff evolution criterion; 7.15 The driving force of evolution; 7.16 Brusselator and Oregonator
  • 7.17 Self-organization concept applied: galaxies; 7.18 Statistical aspects of the formation of dissipative structures