Propagation of transient elastic waves in stratified anisotropic media /
Seismic waves are one of the standard diagnostic tools used to determine the mechanical parameters (volume density of mass, compressibility, elastic stiffness) in the interior of the earth and the geometry of subsurface structures. There is increasing evidence that in the interpretation of seismic d...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; New York : New York, N.Y., U.S.A. :
North Holland ; Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.,
1987.
|
Colección: | North-Holland series in applied mathematics and mechanics ;
v. 32. |
Temas: | |
Acceso en línea: | Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn647099867 | ||
003 | OCoLC | ||
005 | 20231117033308.0 | ||
006 | m o d | ||
007 | cr bn||||||abp | ||
007 | cr bn||||||ada | ||
008 | 100712s1987 ne a ob 001 0 eng d | ||
040 | |a OCLCE |b eng |e pn |c OCLCE |d OCLCQ |d OCLCO |d OCLCF |d UIU |d N$T |d E7B |d YDXCP |d OCLCQ |d DEBBG |d OTZ |d UKAHL |d VLY |d UAB |d S2H |d OCLCO |d OCLCQ |d OCLCO |d COM |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 1100976176 |a 1162041736 |a 1187185690 |a 1197570605 | ||
020 | |a 9781483295909 |q (electronic bk.) | ||
020 | |a 1483295907 |q (electronic bk.) | ||
020 | |z 0444702946 |q (U.S.) | ||
020 | |z 9780444702944 |q (U.S.) | ||
035 | |a (OCoLC)647099867 |z (OCoLC)1100976176 |z (OCoLC)1162041736 |z (OCoLC)1187185690 |z (OCoLC)1197570605 | ||
042 | |a dlr | ||
050 | 4 | |a QE538.5 |b .H55 1987 | |
072 | 7 | |a SCI |x 030000 |2 bisacsh | |
072 | 7 | |a SCI |x 031000 |2 bisacsh | |
082 | 0 | 4 | |a 551.2/2 |2 19 |
084 | |a RB 10115 |2 rvk | ||
100 | 1 | |a Hijden, Joseph H. M. T. van der. | |
245 | 1 | 0 | |a Propagation of transient elastic waves in stratified anisotropic media / |c Joseph H.M.T. van der Hijden. |
260 | |a Amsterdam ; |a New York : |b North Holland ; |a New York, N.Y., U.S.A. : |b Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., |c 1987. | ||
300 | |a 1 online resource (x, 288 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a North-Holland series in applied mathematics and mechanics ; |v v. 32 | |
504 | |a Includes bibliographical references (pages 277-281) and index. | ||
506 | |3 Use copy |f Restrictions unspecified |2 star |5 MiAaHDL | ||
533 | |a Electronic reproduction. |b [Place of publication not identified] : |c HathiTrust Digital Library, |d 2010. |5 MiAaHDL | ||
538 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |u http://purl.oclc.org/DLF/benchrepro0212 |5 MiAaHDL | ||
583 | 1 | |a digitized |c 2010 |h HathiTrust Digital Library |l committed to preserve |2 pda |5 MiAaHDL | |
588 | 0 | |a Print version record. | |
505 | 0 | |a Front Cover; Propagation of Transient Elastic Waves in Stratified Anisotropic Media; Copyright Page; Table of Contents; CHAPTER 1. INTRODUCTION; 1.1 Statement of the problem; 1.2 The method of solution employed; 1.3 Numerical considerations; CHAPTER 2. BASIC RELATIONS FOR ELASTIC WAVES IN STRATIFIED, PIECEWISE HOMOGENEOUS, ANISOTROPIC MEDIA; 2.1 Introduction; 2.2 Description of the configuration and formulation of the problem; 2.3 Basic equations for the elastic wave motion; 2.4 The transform-domain equations; 2.5 The motion-stress vector in a homogeneous subdomain | |
505 | 8 | |a 2.6 The transform-domain wave vector in a source-free domain2.7 The transform-domain wave vector and the motion-stress vector generated by a localized source in a homogeneous subdomain; 2.8 The transform-domain wave vector and the motion-stress vector generated by a localized source in a stratified medium; 2.9 The transform-domain generalized-ray wave constituents; 2.10 Transformation of the solution back to the space-time domain; CHAPTER 3. BASIC RELATIONS FOR ELASTIC WAVES IN STRATIFIED, PIECEWISE HOMOGENEOUS, ISOTROPIC MEDIA; 3.1 Introduction | |
505 | 8 | |a 3.2 Description of the configuration and formulation of the problem3.3 Basic equations for the elastic wave motion; 3.4 The transform-domain equations; 3.5 The motion-stress vector in a homogeneous subdomain; 3.6 The transform-domain wave vector in a source-free domain; 3.7 The transform-domain wave vector and the motion-stress vector generated by a localized source in a homogeneous subdomain; 3.8 The transform-domain wave vector and the motion-stress vector generated by a localized source in a stratified medium; 3.9 The transform-domain generalized-ray wave constituents | |
505 | 8 | |a 3.10 Transformation of the solution back to the space-time domain3.11 Basic relations for acoustic waves in a fluid; CHAPTER 4. RADIATION FROM AN IMPULSIVE SOURCE IN AN UNBOUNDED HOMOGENEOUS ISOTROPIC SOLID; 4.1 Introduction; 4.2 Transformation of the solution back to the space-time domain; 4.3 The behavior of sp, s3 in the complex s plane; 4.4 Cagniard-de Hoop contours in the complex s plane; 4.5 Space-time expression for the motion-stress vector; 4.6 Alternative implementation of the Cagniard-de Hoop method; 4.7 Approximations and derived results; 4.8 Numerical results; 4.9 Conclusion | |
505 | 8 | |a CHAPTER 5. RADIATION FROM AN IMPULSIVE SOURCE IN A STRATIFIED ISOTROPIC MEDIUM5.1 Introduction; 5.2 Transformation of the solution back to the space-time domain; 5.3 The two-dimensional problem; 5.4 The three-dimensional problem; 5.5 Alternative implementation of the Cagniard-de Hoop method; 5.6 Approximations and derived results; 5.7 Numerical results; 5.8 Conclusion; CHAPTER 6. RADIATION FROM AN IMPULSIVE SOURCE IN AN UNBOUNDED HOMOGENEOUS ANISOTROPIC SOLID; 6.1 Introduction; 6.2 Transformation of the solution back to the space-time domain; 6.3 The behavior of s�n3 in the complex s plane | |
520 | |a Seismic waves are one of the standard diagnostic tools used to determine the mechanical parameters (volume density of mass, compressibility, elastic stiffness) in the interior of the earth and the geometry of subsurface structures. There is increasing evidence that in the interpretation of seismic data - especially shear-wave data - the influence of anisotropy must be taken into account. This volume presents a method to compute the seismic waves that are generated by an impulsive source in a stratified anisotropic medium. Although written with the seismic applications in mind, the method that i. | ||
546 | |a English. | ||
650 | 0 | |a Seismic waves. | |
650 | 0 | |a Viscoelasticity. | |
650 | 6 | |a Ondes sismiques. |0 (CaQQLa)201-0038514 | |
650 | 6 | |a Visco�elasticit�e. |0 (CaQQLa)201-0070077 | |
650 | 7 | |a viscoelasticity. |2 aat |0 (CStmoGRI)aat300191658 | |
650 | 7 | |a SCIENCE |x Earth Sciences |x Geography. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Earth Sciences |x Geology. |2 bisacsh | |
650 | 7 | |a Seismic waves |2 fast |0 (OCoLC)fst01111285 | |
650 | 7 | |a Viscoelasticity |2 fast |0 (OCoLC)fst01167814 | |
650 | 7 | |a Seismische Welle |2 gnd |0 (DE-588)4180762-5 | |
650 | 7 | |a Viskoelastizit�at |2 gnd |0 (DE-588)4063621-5 | |
653 | |a Elastic waves |a Propagation | ||
776 | 0 | 8 | |i Print version: |a Hijden, Joseph H.M.T. van der. |t Propagation of transient elastic waves in stratified anisotropic media. |d Amsterdam ; New York : North Holland ; New York, N.Y., U.S.A. : Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., 1987 |w (DLC) 87017340 |w (OCoLC)16224824 |
830 | 0 | |a North-Holland series in applied mathematics and mechanics ; |v v. 32. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780444702944 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/bookseries/01675931/32 |z Texto completo |