Cargando…

Connections, curvature, and cohomology. Volume 3, Cohomology of principal bundles and homogeneous spaces /

Imidazole and Benzimidazole Synthesis is a comprehensive survey of the known methods of syntheses and ring modification. It brings together the multitude of synthesis of the imidazole ring in a systemic way interms of specific bond formation, and recommends the most attractive synthetic approaches....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Greub, Werner Hildbert, 1925-
Otros Autores: Halperin, Stephen, Vanstone, Ray
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Academic Press, 1976.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 SCIDIR_ocn646754948
003 OCoLC
005 20231117033222.0
006 m o d
007 cr cn|||||||||
008 900727s1976 nyu ob 000 0 eng d
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d OPELS  |d UIU  |d OCLCF  |d COO  |d OCLCQ  |d DEBSZ  |d LEAUB  |d VLY  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1162075620 
020 |a 0123027039 
020 |a 9780123027030 
020 |z 9780123027030 
020 |a 1281466867 
020 |a 9781281466860 
020 |a 9786611466862 
020 |a 661146686X 
020 |a 0080879276 
020 |a 9780080879277 
035 |a (OCoLC)646754948  |z (OCoLC)1162075620 
050 4 |a QA649  |b .C663 1976eb 
082 0 4 |a 514.2 
100 1 |a Greub, Werner Hildbert,  |d 1925- 
245 1 0 |a Connections, curvature, and cohomology.  |n Volume 3,  |p Cohomology of principal bundles and homogeneous spaces /  |c Werner Greub, Stephen Halperin, and Ray Vanstone. 
260 |a New York :  |b Academic Press,  |c 1976. 
300 |a 1 online resource (xxi, 593 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
505 0 |a Cover; Contents; Introduction; Chapter 0. Algebraic Preliminaries; PART 1; Chapter I. Spectral Sequences; 1. Filtrations; 2. Spectral sequences; 3. Graded filtered differential spaces; 4. Graded filtered differential algebras; 5. Differential couples; Chapter II. Koszul Complexes of P-Spaces and P-Algebras; 1. P-spaces and P-algebras; 2. Isomorphism theorems; 3. The Poincar�e-Koszul series; 4. Structure theorems; 5. Symmetric P-algebras; 6. Essential P-algebras; Chapter III. Koszul Complexes of P-Differential Algebras; 1. P-differential algebras; 2. Tensor difference; 3. Isomorphism theorems 
505 8 |a 4. Structure theorems5. Cohomology diagram of a tensor difference; 6. Tensor difference with a symmetric P-algebra; 7. Equivalent and c-equivalent (P, d)-algebras; PART 2; Chapter IV. Lie Algebras and Differential Spaces; 1. Lie algebras; 2. Representation of a Lie algebra in a differential space; Chapter V. Cohomology of Lie Algebras and Lie Groups; 1. Exterior algebra over a Lie algebra; 2. Unimodular Lie algebras; 3. Reductive Lie algebras; 4. The structure theorem for (.E). =0; 5. The structure of (.E*).=0; 6. Duality theorems; 7. Cohomology with coefficients in a graded Lie module 
505 8 |a 8. Applications to Lie groupsChapter VI. The Weil Algebra; 1. The Weil algebra; 2. The canonical map PE; 3. The distinguished transgression; 4. The structure theorem for (VE*).=0; 5. The structure theorem for (VE).=0, and duality; 6. Cohomology of the classical Lie algebras; 7. The compact classical Lie groups; Chapter VII. Operation of a Lie Algebra in a Graded Differential Algebra; 1. Elementary properties of an operation; 2. Examples of operations; 3. The structure homomorphism; 4. Fibre projection; 5. Operation of a graded vector space on a graded algebra; 6. Transformation groups 
505 8 |a Chapter VIII. Algebraic Connections and Principal Bundles1. Definition and examples; 2. The decomposition of R; 3. Geometric definition of an operation; 4. The Weil homomorphism; 5. Principal bundles; Chapter IX. Cohomology of Operations and Principal Bundles; 1. The filtration of an operation; 2. The fundamental theorem; 3. Applications of the fundamental theorem; 4. The distinguished transgression; 5. The classification theorem; 6. Principal bundles; 7. Examples; Chapter X. Subalgebras; 1. Operation of a subalgebra; 2. The cohomology of (.E*)iF=0,.F=0; 3. The structure of the algebra H(E/F) 
505 8 |a 4. Cartan pairs5. Subalgebras noncohomologous to zero; 6. Equal rank pairs; 7. Symmetric pairs; 8. Relative Poincar�e duality; 9. Symplectic metrics; Chapter XI. Homogeneous Spaces; 1. The cohomology of a homogeneous space; 2. The structure of H(G/K); 3. The Weyl group; 4. Examples of homogeneous spaces; 5. Non-Cartan pairs; Chapter XII. Operation of a Lie Algebra Pair; 1. Basic properties; 2. The cohomology of BF; 3. Isomorphism of the cohomology diagrams; 4. Applications of the fundamental theorem; 5. Bundles with fibre a homogeneous space 
520 |a Imidazole and Benzimidazole Synthesis is a comprehensive survey of the known methods of syntheses and ring modification. It brings together the multitude of synthesis of the imidazole ring in a systemic way interms of specific bond formation, and recommends the most attractive synthetic approaches. It also collects non-ring-synthetic approaches to classes of compounds such as nitro-, halogeno-, and amino-imidazoles, and covers the synthesis of N-substituted compounds and preparations of specific isomers. 
546 |a English. 
650 0 |a Connections (Mathematics) 
650 0 |a Curvature. 
650 0 |a Homology theory. 
650 6 |a Connections (Math�ematiques)  |0 (CaQQLa)201-0037657 
650 6 |a Courbure.  |0 (CaQQLa)201-0039103 
650 6 |a Homologie.  |0 (CaQQLa)201-0012190 
650 7 |a Connections (Mathematics)  |2 fast  |0 (OCoLC)fst00875339 
650 7 |a Curvature  |2 fast  |0 (OCoLC)fst00885436 
650 7 |a Homology theory  |2 fast  |0 (OCoLC)fst00959720 
700 1 |a Halperin, Stephen. 
700 1 |a Vanstone, Ray. 
776 |z 0-12-302703-9 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780123027030  |z Texto completo