Cargando…

Artificial neural networks and statistical pattern recognition : old and new connections /

With the growing complexity of pattern recognition related problems being solved using Artificial Neural Networks, many ANN researchers are grappling with design issues such as the size of the network, the number of training patterns, and performance assessment and bounds. These researchers are cont...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Sethi, Ishwar K., 1948-, Jain, Anil K., 1948-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; New York : New York, N.Y., U.S.A. : North-Holland ; Elsevier Science Pub. Co. [distributor], 1991.
Colección:Machine intelligence and pattern recognition ; v. 11.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn645856210
003 OCoLC
005 20231117033207.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 100702s1991 ne a ob 001 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d OPELS  |d EBLCP  |d N$T  |d E7B  |d YDXCP  |d DEBSZ  |d OCLCQ  |d UAB  |d MERUC  |d OCLCQ  |d VLY  |d INARC  |d LUN  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d COM  |d OCLCO  |d OCLCQ 
019 |a 301007242  |a 897647372  |a 961487351  |a 974619345  |a 1148011030  |a 1162416534 
020 |a 0444887407  |q (electronic bk.) 
020 |a 9780444887405  |q (electronic bk.) 
020 |a 9781483297873 
020 |a 148329787X 
020 |z 0444887415  |q (pbk.) 
020 |z 9780444887412  |q (pbk.) 
035 |a (OCoLC)645856210  |z (OCoLC)301007242  |z (OCoLC)897647372  |z (OCoLC)961487351  |z (OCoLC)974619345  |z (OCoLC)1148011030  |z (OCoLC)1162416534 
042 |a dlr 
050 4 |a TK7882.P3  |b A7 1991 
082 0 4 |a 006.3  |2 20 
084 |a 54.72  |2 bcl 
084 |a 54.32  |2 bcl 
084 |a 54.10  |2 bcl 
245 0 0 |a Artificial neural networks and statistical pattern recognition :  |b old and new connections /  |c edited by Ishwar K. Sethi, Anil K. Jain. 
260 |a Amsterdam ;  |a New York :  |b North-Holland ;  |a New York, N.Y., U.S.A. :  |b Elsevier Science Pub. Co. [distributor],  |c 1991. 
300 |a 1 online resource (xiv, 271 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Machine intelligence and pattern recognition ;  |v v. 11 
504 |a Includes bibliographical references and index. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
520 |a With the growing complexity of pattern recognition related problems being solved using Artificial Neural Networks, many ANN researchers are grappling with design issues such as the size of the network, the number of training patterns, and performance assessment and bounds. These researchers are continually rediscovering that many learning procedures lack the scaling property; the procedures simply fail, or yield unsatisfactory results when applied to problems of bigger size. Phenomena like these are very familiar to researchers in statistical pattern recognition (SPR), where the <Q>curse of dimensionality</Q> is a well-known dilemma. Issues related to the training and test sample sizes, feature space dimensionality, and the discriminatory power of different classifier types have all been extensively studied in the SPR literature. It appears however that many ANN researchers looking at pattern recognition problems are not aware of the ties between their field and SPR, and are therefore unable to successfully exploit work that has already been done in SPR. Similarly, many pattern recognition and computer vision researchers do not realize the potential of the ANN approach to solve problems such as feature extraction, segmentation, and object recognition. The present volume is designed as a contribution to the greater interaction between the ANN and SPR research communities. 
505 0 |a Front Cover; Artificial Neural Networks and Statistical Pattern Recognition: Old and New Connections; Copyright Page; FOREWORD; PREFACE; Table of Contents; PART 1: ANN AND SPR RELATIONSHIP; CHAPTER 1. EVALUATION OF A CLASS OF PATTERN-RECOGNITION NETWORKS; INTRODUCTION; 1. A CLASS OF PATTERN-RECOGNITION NETWORKS; 2. A REPRESENTATION OF THE JOINT DISTRIBUTION; 3. A CLASS OF CLASSIFICATION FUNCTIONS; 4. DETERMINATION OF COEFFICIENTS FROM SAMPLES; 5. SOME COMMENTS ON COMPARING DESIGN PROCEDURES; 6. SOME COMMENTS ON THE CHOICE OF OBSERVABLES, AND ON INVARIANCE PROPERTIES; ACKNOWLEDGMENT 
505 8 |a 5. PEAKING IN THE CLASSIFICATION PERFORMANCE WITH INCREASE IN DIMENSIONALITY6. EFFECT OF THE NUMBER OF NEURONS IN THE HIDDEN LAYERON THE PERFORMANCE OF ANN CLASSIFIERS; 7. DISCUSSION; References; CHAPTER 4. On Tree Structured Classifiers; Abstract; 1. INTRODUCTION; 2. DECISION RULES AND CLASSIFICATION TREES; 3. CLASSIFICATION TREE CONSTRUCTION AND ERROR RATE ESTIMATION; 4. TREE PRUNING ALGORITHMS; 5. EXPERIMENTAL RESULTS; 6. CONCLUSION; REFERENCES; CHAPTER 5. Decision tree performance enhancement using an artificial neural network implementation; Abstract; 1. INTRODUCTION 
505 8 |a 2. DECISION TREE CLASSIFIER ISSUES3. MULTILAYER PERCEPTRON NETWORKS; 4. AN MLP IMPLEMENTATION OF TREE CLASSIFIERS; 5. TRAINING THE TREE MAPPED NETWORK; 6. PERFORMANCE EVALUATION; 7. CONCLUSIONS; REFERENCES; PART 2: APPLICATIONS; CHAPTER 6. Bayesian and neural network pattern recognition : atheoretical connection and empirical results with handwritten characters; Abstract; 1 Introduction; 2 Bayes Classifier; 3 Artificial Neural Networks and Back Propagation; 4 Relationship; 5 Experimental Results; 6 Discussion; 7 Conclusion; 8 Acknowledgements; References 
505 8 |a CHAPTER 7. Shape and Texture Recognition by a Neural Network1. INTRODUCTION; 2. ZERNIKE MOMENT FEATURES FOR SHAPE RECOGNITION; 3. RANDOM FIELD FEATURES FOR TEXTURE RECOGNITION; 4. MULTI-LAYER PERCEPTRON CLASSIFIER; 5. CONVENTIONAL STATISTICAL CLASSIFIERS; 6. EXPERIMENTAL STUDY ON SHAPE CLASSIFICATION; 7. EXPERIMENTAL STUDY ON TEXTURE CLASSIFICATION; 8. DISCUSSIONS AND CONCLUSIONS; 9. REFERENCES; CHAPTER 8. Neural Networks for Textured Image Processing; Abstract; 1. INTRODUCTION; 2. DETECTION OF EDGES IN COMPUTER AND HUMAN VISION; 3. TEXTURE ANALYSIS USING MULTIPLE CHANNEL FILTERS 
546 |a English. 
650 0 |a Pattern recognition systems. 
650 0 |a Neural networks (Computer science) 
650 2 |a Pattern Recognition, Automated  |0 (DNLM)D010363 
650 2 |a Neural Networks, Computer  |0 (DNLM)D016571 
650 6 |a Reconnaissance des formes (Informatique)  |0 (CaQQLa)201-0028094 
650 6 |a R&#xFFFD;eseaux neuronaux (Informatique)  |0 (CaQQLa)201-0209597 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Pattern recognition systems.  |2 fast  |0 (OCoLC)fst01055266 
650 7 |a Neuronales Netz  |2 gnd  |0 (DE-588)4226127-2 
650 7 |a Aufsatzsammlung  |2 gnd  |0 (DE-588)4143413-4 
650 7 |a Reconhecimento de padroes (engenharia eletrica)  |2 larpcal 
650 7 |a Inteligencia artificial.  |2 larpcal 
650 0 7 |a Mustererkennung.  |2 swd 
653 0 |a Artificial intelligence 
700 1 |a Sethi, Ishwar K.,  |d 1948- 
700 1 |a Jain, Anil K.,  |d 1948- 
776 0 8 |i Print version:  |t Artificial neural networks and statistical pattern recognition.  |d Amsterdam ; New York : North-Holland ; New York, N.Y., U.S.A. : Elsevier Science Pub. Co. [distributor], 1991  |w (DLC) 91024621  |w (OCoLC)24143926 
830 0 |a Machine intelligence and pattern recognition ;  |v v. 11. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444887405  |z Texto completo