|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_ocn645797096 |
003 |
OCoLC |
005 |
20231117033204.0 |
006 |
m o d |
007 |
cr bn||||||abp |
007 |
cr bn||||||ada |
008 |
100702s1991 maua ob 001 0 eng d |
040 |
|
|
|a OCLCE
|b eng
|e pn
|c OCLCE
|d OCLCQ
|d OCLCF
|d OCLCO
|d OPELS
|d EBLCP
|d N$T
|d E7B
|d DEBSZ
|d YDXCP
|d OCLCQ
|d MERUC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d VLY
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 609272639
|a 898769220
|a 1162098538
|
020 |
|
|
|a 9780126720259
|q (electronic bk.)
|
020 |
|
|
|a 0126720258
|q (electronic bk.)
|
020 |
|
|
|a 9781483265193
|
020 |
|
|
|a 1483265196
|
035 |
|
|
|a (OCoLC)645797096
|z (OCoLC)609272639
|z (OCoLC)898769220
|z (OCoLC)1162098538
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA471
|b .S88 1991
|
072 |
|
7 |
|a MAT
|x 012000
|2 bisacsh
|
082 |
0 |
4 |
|a 516/.5
|2 20
|
100 |
1 |
|
|a Stolfi, Jorge.
|
245 |
1 |
0 |
|a Oriented projective geometry :
|b a framework for geometric computations /
|c Jorge Stolfi.
|
260 |
|
|
|a Boston :
|b Academic Press,
|c �1991.
|
300 |
|
|
|a 1 online resource (vii, 237 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references (pages 223-224) and index.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2010.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2010
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Oriented Projective Geometry: A Framework for Geometric Computations; Copyright Page; Table of Contents; Chapter 0. Introduction; Chapter 1. Projective geometry; 1. The classic projective plane; 2. Advantages of projective geometry; 3. Drawbacks of classical projective geometry; 4. Oriented projective geometry; 5. Related work; Chapter 2. Oriented projective spaces; 1. Models of two-sided space; 2. Central projection; Chapter 3. Flats; 1. Definition; 2. Points; 3. Lines; 4. Planes; 5. Three-spaces; 6. Ranks; 7. Incidence and independence; Chapter 4. Simplices and orientation
|
505 |
8 |
|
|a 1. Simplices2. Simplex equivalence; 3. Point location relative to a simplex; 4. The vector space model; Chapter 5. The join operation; 1. The join of two points; 2. The join of a point and a line; 3. The join of two arbitrary flats; 4. Properties of join; 5. Null objects; 6. Complementary flats; Chapter 6. The meet operation; 1. The meeting point of two lines; 2. The general meet operation; 3. Meet in three dimensions; 4. Properties of meet; Chapter 7. Relative orientation; 1. The two sides of a line; 2. Relative position of arbitrary flats; 3. The separation theorem
|
505 |
8 |
|
|a 4. The coefficients of a hyperplaneChapter 8. Projective maps; 1. Formal definition; 2. Examples; 3. Properties of projective maps; 4. The matrix of a map; Chapter 9. General two-sided spaces; 1. Formal definition; 2. Subspaces; Chapter 10. Duality; 1. Duomorphisms; 2. The polar complement; 3. Polar complements as duomorphisms; 4. Relative polar complements; 5. General duomorphisms; 6. The power of duality; Chapter 11. Generalized projective maps; 1. Projective functions; 2. Computer representation; Chapter 12. Projective frames; 1. Nature of projective frames; 2. Classification of frames
|
505 |
8 |
|
|a 3. Standard frames4. Coordinates relative to a frame; Chapter 13. Cross ratio; 1. Cross ratio in unoriented geometry; 2. Cross ratio in the oriented framework; Chapter 14. Convexity; 1. Convexity in classical projective space; 2. Convexity in oriented projective spaces; 3. Properties of convex sets; 4. The half-space property; 5. The convex hull; 6. Convexity and duality; Chapter 15. Affine geometry; 1. The Cartesian connection; 2. Two-sided affine spaces; Chapter 16. Vector algebra; 1. Two-sided vector spaces; 2. Translations; 3. Vector algebra; 4. The two-sided real line; 5. Linear maps
|
505 |
8 |
|
|a Chapter 17. Euclidean geometry on the two-sided plane1. Perpendicularity; 2. Two-sided Euclidean spaces; 3. Euclidean maps; 4. Length and distance; 5. Angular measure and congruence; 6. Non-Euclidean geometries; Chapter 18. Representing flats by simplices; 1. The simplex representation; 2. The dual simplex representation; 3. The reduced simplex representation; Chapter 19. Pl�ucker coordinates; 2. The canonical embedding; 3. Plucker coefficients; 4. Storage eff�iciency; 5. The Grassmann manifolds; Chapter 20. Formulas for Pl�ucker coordinates; 1. Algebraic formulas; 2. Formulas for computers
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Geometry, Projective
|x Data processing.
|
650 |
|
6 |
|a G�eom�etrie projective
|0 (CaQQLa)201-0069551
|x Informatique.
|0 (CaQQLa)201-0380011
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Geometry, Projective
|x Data processing
|2 fast
|0 (OCoLC)fst00940937
|
650 |
|
7 |
|a Projektive Geometrie
|2 gnd
|0 (DE-588)4047436-7
|
650 |
|
7 |
|a Algorithmische Geometrie
|2 gnd
|0 (DE-588)4130267-9
|
650 |
|
7 |
|a Orientierung
|g Mathematik
|2 gnd
|0 (DE-588)4172822-1
|
650 |
|
7 |
|a Geometrische Modellierung
|2 gnd
|0 (DE-588)4156717-1
|
650 |
|
7 |
|a G�eom�etrie projective.
|2 ram
|
653 |
0 |
|
|a Projective geometry
|
776 |
0 |
8 |
|i Print version:
|a Stolfi, Jorge.
|t Oriented projective geometry.
|d Boston : Academic Press, �1991
|w (DLC) 91016219
|w (OCoLC)23694238
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780126720259
|z Texto completo
|