Cargando…

Oriented projective geometry : a framework for geometric computations /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stolfi, Jorge
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston : Academic Press, �1991.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn645797096
003 OCoLC
005 20231117033204.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 100702s1991 maua ob 001 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCF  |d OCLCO  |d OPELS  |d EBLCP  |d N$T  |d E7B  |d DEBSZ  |d YDXCP  |d OCLCQ  |d MERUC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d VLY  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 609272639  |a 898769220  |a 1162098538 
020 |a 9780126720259  |q (electronic bk.) 
020 |a 0126720258  |q (electronic bk.) 
020 |a 9781483265193 
020 |a 1483265196 
035 |a (OCoLC)645797096  |z (OCoLC)609272639  |z (OCoLC)898769220  |z (OCoLC)1162098538 
042 |a dlr 
050 4 |a QA471  |b .S88 1991 
072 7 |a MAT  |x 012000  |2 bisacsh 
082 0 4 |a 516/.5  |2 20 
100 1 |a Stolfi, Jorge. 
245 1 0 |a Oriented projective geometry :  |b a framework for geometric computations /  |c Jorge Stolfi. 
260 |a Boston :  |b Academic Press,  |c �1991. 
300 |a 1 online resource (vii, 237 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 223-224) and index. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |a Front Cover; Oriented Projective Geometry: A Framework for Geometric Computations; Copyright Page; Table of Contents; Chapter 0. Introduction; Chapter 1. Projective geometry; 1. The classic projective plane; 2. Advantages of projective geometry; 3. Drawbacks of classical projective geometry; 4. Oriented projective geometry; 5. Related work; Chapter 2. Oriented projective spaces; 1. Models of two-sided space; 2. Central projection; Chapter 3. Flats; 1. Definition; 2. Points; 3. Lines; 4. Planes; 5. Three-spaces; 6. Ranks; 7. Incidence and independence; Chapter 4. Simplices and orientation 
505 8 |a 1. Simplices2. Simplex equivalence; 3. Point location relative to a simplex; 4. The vector space model; Chapter 5. The join operation; 1. The join of two points; 2. The join of a point and a line; 3. The join of two arbitrary flats; 4. Properties of join; 5. Null objects; 6. Complementary flats; Chapter 6. The meet operation; 1. The meeting point of two lines; 2. The general meet operation; 3. Meet in three dimensions; 4. Properties of meet; Chapter 7. Relative orientation; 1. The two sides of a line; 2. Relative position of arbitrary flats; 3. The separation theorem 
505 8 |a 4. The coefficients of a hyperplaneChapter 8. Projective maps; 1. Formal definition; 2. Examples; 3. Properties of projective maps; 4. The matrix of a map; Chapter 9. General two-sided spaces; 1. Formal definition; 2. Subspaces; Chapter 10. Duality; 1. Duomorphisms; 2. The polar complement; 3. Polar complements as duomorphisms; 4. Relative polar complements; 5. General duomorphisms; 6. The power of duality; Chapter 11. Generalized projective maps; 1. Projective functions; 2. Computer representation; Chapter 12. Projective frames; 1. Nature of projective frames; 2. Classification of frames 
505 8 |a 3. Standard frames4. Coordinates relative to a frame; Chapter 13. Cross ratio; 1. Cross ratio in unoriented geometry; 2. Cross ratio in the oriented framework; Chapter 14. Convexity; 1. Convexity in classical projective space; 2. Convexity in oriented projective spaces; 3. Properties of convex sets; 4. The half-space property; 5. The convex hull; 6. Convexity and duality; Chapter 15. Affine geometry; 1. The Cartesian connection; 2. Two-sided affine spaces; Chapter 16. Vector algebra; 1. Two-sided vector spaces; 2. Translations; 3. Vector algebra; 4. The two-sided real line; 5. Linear maps 
505 8 |a Chapter 17. Euclidean geometry on the two-sided plane1. Perpendicularity; 2. Two-sided Euclidean spaces; 3. Euclidean maps; 4. Length and distance; 5. Angular measure and congruence; 6. Non-Euclidean geometries; Chapter 18. Representing flats by simplices; 1. The simplex representation; 2. The dual simplex representation; 3. The reduced simplex representation; Chapter 19. Pl�ucker coordinates; 2. The canonical embedding; 3. Plucker coefficients; 4. Storage eff�iciency; 5. The Grassmann manifolds; Chapter 20. Formulas for Pl�ucker coordinates; 1. Algebraic formulas; 2. Formulas for computers 
546 |a English. 
650 0 |a Geometry, Projective  |x Data processing. 
650 6 |a G�eom�etrie projective  |0 (CaQQLa)201-0069551  |x Informatique.  |0 (CaQQLa)201-0380011 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Geometry, Projective  |x Data processing  |2 fast  |0 (OCoLC)fst00940937 
650 7 |a Projektive Geometrie  |2 gnd  |0 (DE-588)4047436-7 
650 7 |a Algorithmische Geometrie  |2 gnd  |0 (DE-588)4130267-9 
650 7 |a Orientierung  |g Mathematik  |2 gnd  |0 (DE-588)4172822-1 
650 7 |a Geometrische Modellierung  |2 gnd  |0 (DE-588)4156717-1 
650 7 |a G�eom�etrie projective.  |2 ram 
653 0 |a Projective geometry 
776 0 8 |i Print version:  |a Stolfi, Jorge.  |t Oriented projective geometry.  |d Boston : Academic Press, �1991  |w (DLC) 91016219  |w (OCoLC)23694238 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780126720259  |z Texto completo