Cargando…

Non-linear waves in dispersive media /

Non-Linear Waves in Dispersive Media introduces the theory behind such topic as the gravitational waves on water surfaces. Some limiting cases of the theory, wherein proof of an asymptotic class is necessary and generated, are also provided. The first section of the book discusses the notion of line...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Karpman, Vladimir Iosifovich
Formato: Electrónico eBook
Idioma:Inglés
Indeterminado
Publicado: Oxford ; New York : Pergamon Press, [1974, �1975]
Edición:[1st ed.].
Colección:International series of monographs in natural philosophy ; v. 71.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Non-Linear Waves in Dispersive Media; Copyright Page; Table of Contents; PREFACE; INTRODUCTION; Chapter 1. LINEAR APPROXIMATION; 2 General Solution of the Linearized Equations; 3 Linearized Korteweg-de Vries Equation; Chapter 2. EXAMPLES OF DISPERSIVE MEDIA; 4 Gravitational Waves on Fluid Surfaces; 5 The Boussinesq Equation; 6 Ion-sound Waves in Unmagnetized Plasma; 7 Non-linear Waves in Magnetized Plasma; 8 Non-linear Electromagnetic Waves in Isotropie Dielectrics; 9 Sound Waves with Dispersion; Chapter 3. NON-LINEAR STATIONARY WAVES.
  • 10 Steady Solutions of the Boussinesq Equations 11 Stationary Waves Propagating Transversely to the Magnetic Field in Rarefied Plasma (34-37, 3); 12 Other Examples of Stationary Waves; Chapter 4. NON-LINEAR WAVES IN WEAKLY DISPERSIVE MEDIA; 13 The Burgers Equation; 14 Solution of the Burgers Equation; 15 The Korteweg-de Vries Equation; 16 Conservation Laws for the Korteweg-de Vries Equation; 17 General Pattern of the Evolution of Initial Perturbations in Weakly Dispersive Media; 18 Analytical Solution of the Korteweg-de Vries Equation.
  • 29 Self-focusing and Self-channelling of Waves 30 Electro-acoustic Waves in Plasma; APPENDIX A: NON-LINEAR WAVES WITH SLOWLY VARYING PARAMETERS (ADIABATIC APPROXIMATION OF WHITHAM); A 1 Variation Principle; A 2 Adiabatic Invariants; A 3 Non-linear Geometrical Optics; APPENDIX B: EVOLUTION OF ELECTRO-ACOUSTIC WAVES IN PLASMA WITH NEGATIVE DIELECTRIC PERMITTIVITY; B 1 Boundary Conditions; B 2 Excitation and Evolution of Electro-acoustic Waves; B 3 Solution of the Boundary-value Problem; B 4 General Solution of the Fundamental Equations; REFERENCES; INDEX.